Switch disconnector	4.2
2 way / centre-off changeover modular switches	4.3
Latching relays	4.4
Relays	4.5
Interface relays	4.5
Contactors	4.6
Override contactors	4.7
Electromechanical time switches	4.8
Electromechanical and digital timers selection guide	4.9
Digital time switches	4.10
4 channel digital time switches	4.11
Light sensitive switch	4.12
Light sensitive programmer	4.13
Emergency lighting module	4.13
Timers selection guide	4.14
Delay timers	4.15
Time lag switches	4.16
Pushbuttons - Impulse	4.17
Pushbuttons - Latching	4.18
Indicator lights	4.18
Transformers, bells and buzzers	4.19
Thermostats	4.20
Programmable thermostat	4.21
Analogue voltmeters, ammeters	4.22
Digital voltmeters	4.23
Current transformers	4.23
Selector switches for voltmeters and ammeters	4.24
kiloWatt hour meters	4.25
Hours counter	4.27

Switch Disconnector

2 way / Centre-off Changeover

Modular Switches

Latching Relays

	Description Latching relays - operate when impulsed by a signal voltage. The impulse can be provided via a pushbutton or pushswitch. The first pulse operates the relay and latches it into its set (opposite) state, the next operation of the pushbutton returns the relay into its reset (original) state.		Auxiliary contacts (EPN050, EPN051) Are available for remote signalling and centralised control applications and can be easily combined with the latching relays. connection: $10 \mathrm{~mm}^{2}$ flexible $6 \mathrm{~mm}^{2}$ rigid				
	Designation	Type	Coil	Power circuit AC1	Width in 17.5 mm	Pack qty.	Cat Ref.
18	Latching relays	1 NO	$\begin{aligned} & 230 \mathrm{~V} 50 \mathrm{~Hz} \\ & 24 \mathrm{~V} 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A}-250 \mathrm{~V} \sim \\ & 16 \mathrm{~A}-250 \mathrm{~V} \sim \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	12 1	EPN510 EPN513
		2 NO	$\begin{aligned} & 230 \mathrm{~V} 50 \mathrm{~Hz} \\ & 24 \mathrm{~V} 50 \mathrm{~Hz} \\ & 12 \mathrm{~V} 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A}-250 \mathrm{~V} \sim \\ & 16 \mathrm{~A}-250 \mathrm{~V} \sim \\ & 16 \mathrm{~A}-250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	EPN520 EPN524 EPN521
EPN510							
$(9 \boldsymbol{9} 9$		$1 \mathrm{NC}+1 \mathrm{NO}$	$\begin{aligned} & 230 \mathrm{~V} 50 \mathrm{~Hz} \\ & 24 \mathrm{~V} 50 \mathrm{~Hz} \\ & 12 \mathrm{~V} 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A}-250 \mathrm{~V} \sim \\ & 16 \mathrm{~A}-250 \mathrm{~V} \sim \\ & 16 \mathrm{~A}-250 \mathrm{~V} \sim \end{aligned}$	1 1 1	1 1 1	EPN515 EPN518 EPN519
		$2 \mathrm{NC}+2 \mathrm{NO}$	$\begin{aligned} & 230 \mathrm{~V} 50 \mathrm{~Hz} \\ & 24 \mathrm{~V} 50 \mathrm{~Hz} \\ & 12 \mathrm{~V} 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A}-250 \mathrm{~V} \sim \\ & 16 \mathrm{~A}-250 \mathrm{~V} \sim \\ & 16 \mathrm{~A}-250 \mathrm{~V} \sim \end{aligned}$	2 2 2	1 1 1	EPN525 EPN528 EPN529

EPN540

| | 4 NO | 230 V 50 Hz | $16 \mathrm{~A}-400 \mathrm{~V} \sim$ | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad EPN540

Designation	Power circuit	Width in 17.5 mm	Pack qty.	Cat Ref.
Auxiliary contact	2A-250V~	1/2	1	EPN051
Auxiliary contact for centralised control	24V-230V~	1/2	1	EPN050

Relays

	Description To provide command of low power circuits max 16A; associated with push buttons, switches, time switches etc to provide for remote control applications. The relays will accept an auxiliary contact for remote signalling applications. (EP071)		For the command of ELV circuits use interface relays EN145 and EN 146. For the command of high power circuits (20, 4063 amps) use contactors as shown on page 4.6.				
	Designation	Type	Coil AC voltage	Power circuit AC1	Width in 17.5 mm	Pack qty.	Cat Ref.
	Relays	$1 \mathrm{NC}+1 \mathrm{NO}$	$\begin{aligned} & 230 \mathrm{~V} 50 \mathrm{~Hz} \\ & 24 \mathrm{~V} 50 \mathrm{~Hz} \\ & 12 \mathrm{~V} 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A}-250 \mathrm{~V} \sim \\ & 16 \mathrm{~A}-250 \mathrm{~V} \sim \\ & 16 \mathrm{~A}-250 \mathrm{~V} \sim \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { ER120 } \\ & \text { ER123 } \\ & \text { ER124 } \end{aligned}$
30		$2 \mathrm{NC}+2 \mathrm{NO}$	$\begin{aligned} & 230 \mathrm{~V} 50 \mathrm{~Hz} \\ & 24 \mathrm{~V} 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 16 A-250 V \sim \\ & 16 A-250 V \sim \end{aligned}$	2 2	1	ER135 ER138
ER120			12 V 50 Hz	16A - 250V~	1	2	ER139
	Auxiliary contacts			2A-250V~	1/2	1	EP071

Interface Relays

Contactors

Override Contactors

$$
\begin{array}{llll}
\hline \text { Heat dissipation insert } & 1 / 2 & 10 & \text { LZO60 }
\end{array}
$$

Electromechanical Time Switches

Electromechanical and Digital Timers

- Selection Guide

Range:
Electromechanical Time Clocks
1 Channel:

24 hours +7 days

7 days	EH171	EG071	EG103 EG103V EG103E	EG203 EG203E	

Annual

Applications:

Heating

Lighting

Immersion Heater

Power Outlets

Ventilation

Air-Conditioning

Refrigerator

Alarm

Digital Time Switches

4 Channel Digital Time Switches

EG400

Programming key	$1 \quad$ EG002

PC interface and software tool	RS232 interface between PC and key interface module with software on CD, serial port connection	EG003	
	USB connection	1	EG003U

Light Sensitive Switch

	Description A photo-electric cell measures the light level and in conjunction with the relay provides on/off control of a circuit. This device controls lighting circuits in relation to ambient light, based on user settings. Front cover sealability	Street lighting, display lighting, illuminated signs etc. Connection: Protected cable clamps Capacity: Rigid: 1.5 to $10 \mathrm{~mm}^{2}$ Flexible: 1 to $6 \mathrm{~mm}^{2}$ On board LED shows status of changeover contact.	Technical data 4 position override switch allowing: - Auto: normal operating mode - On: permanently switched on - Off: permanently switched off - Test: setting mode for easy adjustment.		
	Designation	Characteristics	Width in II 17.5 mm	Pack qty.	Cat Ref.
	Light sensitive switch Sensitivity: 2 ranges 5 to 50 lux	Voltage rating: 230V~ - 50/60 Hz Output: 1 changeover AC1 con		1	EE100
	50 to 2000 lux	16A AC1-230V~			
$\xrightarrow{1+\cdots e+\cdots}$	Delivered with: A separate surface Photo-electric cell (EE003)	Maximum distance: 50 m betwe photocell and controller			
EE100 complete with surface photo electric cell		Must be used in conjunction with a suitably rated contactor (see page 4.29) where load conditions demand			

Light Sensitive Programmer

Emergency Lighting Module

Timers

- Selection Guide

Typical area of application

Delay Timers

Time Lag Switches

	Description To provide control of lighting circuits with automatic switch-off after a pre-set time (e.g.: staircase, corridors). Command signal via impulse. Technical data - Time delay setting by rotating dial on front of device. - 30 s to 10 min	EM001N time lag switch For lighting circuits (medium or high daily use) Characteristic: compact design equipped with a 2 position switch permanent/timed lighting implementation facility. Note: This range is only suitable for use with momentary pushbuttons, non latching switches.	EM002 switch off notice add-on block Incorporating pre-warning of switch-off improves the safety for users / pre-warning of switch-off at the end of the time delay, light intensity reduction by 50% for a period of 24 sec . prior to final switch off. Use only on incandescent lighting circuits.		
	Designation	Characteristics	Width in 17.5 mm	Pack qty.	Cat Ref.
	Time lag switch 24 sec . to 12 min .	Voltage rating: 230V; - 50/60 Hz Restart facility 2 function switch: - Permanent - Timed Output: 1 changeover contact 16 A - 230V; AC 1 10A - 2300W - incandescent 10A - 2300W - halogen 230V	1	6	EM001N
EM001N	Note: Heat dissipation insert (LZO) recommended between EM001N	N and EM00	f fitted)	
EM002	Add-on block pre-warning switch off notice	Voltage rating: 230V; - $50 / 60 \mathrm{~Hz}$ Restart facility Pre-warning of switch-off by decrease of output Voltage (50% for 24 sec .) Switch off notice: 24 secs Output power: 1000W - incandescent 1000W - halogen Not suitable for use with discharge lamp	2	1	EM002

Pushbuttons

\square

- Impulse

	Description Pushbuttons to actuate loads either directly or via contactors etc.	Technical data Modular pushbuttons - Without light With grey button, red/green optional - With light With red, green button	Light tec LED Connect Cage ter Capacity $10 \mathrm{~mm}^{2}$ rig $6 \mathrm{~mm}^{2}$ fle	nology nals cond le con BS EN	tor. ctor. 0947-5-1
	Designation	Characteristics	Width in 17.5 mm	Pack qty.	Cat Ref.
-	Pushbuttons (Impulse)	$16 \mathrm{~A}-250 \mathrm{~V} \sim$ Without indicator light			
	$[-)^{\prime}$	Contacts: 1 NO	1	12	SVN311
	$\left.[-)^{\prime}-\right)^{\prime}$	Contacts: 2 NO	1	12	SVN331
SVN311	$\left[F^{\prime}[\cdot)^{\prime}\right.$	Contacts: 2 NO Double Pushbutton	1	12	SVN371
	1.4	Contacts: 1 NC	1	12	SVN321
	4	Contacts: 2 NC	1	12	SVN341
	$[)^{1} 4$	Contacts: $1 \mathrm{NO}+1 \mathrm{NC}$	1	12	SVN351
SVN391	$\left[F^{\prime} \cdot \frac{4}{4}\right.$	Contacts: $1 \mathrm{NO}+1 \mathrm{NC}$ Double Pushbutton	1	12	SVN391
	Pushbuttons (Impulse)	With indicator light			
θ	$[)^{\prime} \otimes$	Contacts: 1 NO: Green	1	12	SVN411
Contacts: 2 NO : Red 12 SVN432					
	19	Contacts: 1 NC : Red	1	12	SVN422
	4%	Contacts: 2 NC : Green	1	12	SVN441
θ	$\theta^{\prime} 4 \otimes$	Contacts: $1 \mathrm{NO}+1 \mathrm{NC}$	1	12	SVN452
SVN422					

Pushbuttons

- Latching

Indicator Lights

Transformers, Bells and Buzzers

Thermostats

	Description Electronic thermostats for any application requiring temperature control (from cold room to steam room). Applications EK081 fixed ambient probe for night temperature regulation. EK083 used as floor probe to limit floor temperature. EK083 used to control hot water temperature (with its collar) in case of probe disconnection.	3 working modes are possible (selected by wiring): 1. Permanent off 2. Permanent on 3. Cyclic operation 1 minute in every 4. Output status is displayed by an LED.	EK187 Electronic thermostat suitable for heating control Two adjustable temperature levels are selected by external signals (operation by time switch or digital programmer). Additionally there is an adjustable low level temperature for frost protection etc. In the event of probe disconnection the heating system is switched on one minute in every four.		
	Designation	Characteristics	Width in 17.5 mm	Pack qty.	Cat Ref.
	Multi-range thermostats Delivered without probe associate with EK081 or EK083 probes	Voltage rating: 230V~ - 50/60 Hz Output: 1 changeover contact 2A AC1-230V~ 4 ranges: $-30 \text { to } 0^{\circ} \mathrm{C}$ 0 to $+30^{\circ} \mathrm{C}$ $+30 \text { to }+60^{\circ} \mathrm{C}$ $+60 \text { to }+90^{\circ} \mathrm{C}$ To associate with contactors (page 4.29)	3	1	EK186
EK187					
EK081	Multi-order thermostat Delivered without probe associate with EK081 or EK082 probes Accuracy $\pm 0.2^{\circ} \mathrm{C}$	Voltage rating: 230V~ - 50/60 Hz Output: 1 changeover contact 2A AC1-230V~ Temperature level 1 (comfort) Adjustable $5-30^{\circ} \mathrm{C}$ Temperature level 2 (night setting) Adjustable $2-8^{\circ} \mathrm{C}$ less than Level 1 setting Temperature level 3 (frost setting) Adjustable $5-30^{\circ} \mathrm{C}$ To associate with contactors (page 4.29)	3	1	EK187
	Fixed ambient probe	Can be associated with: EK186, EK187 thermostats EG502 programmable thermostat		1	EK081
	Adjustable ambient probe The probe is equipped with a potentiometer for the correction of the set temperature ($\pm 3^{\circ} \mathrm{C}$)	Can be associated with: EK187 thermostat EG502 programmable thermostat		1	EK082
	Universal probe Removable collar	Can be associated with: EK186 thermostat EG502 programmable thermostat		1	EK083

Programmable Thermostat

	Programmable thermostat description To save energy by managing the heating system according to the periods of occupation. It is a weekly programmer associated with a 3 setting thermostat: - "Comfort", - "Reduced", - "Anti-frost" Connection: protected cable clamps Capacity: 1.5 to $10 \mathrm{~mm}^{2}$ rigid Capacity: 1 to $6 \mathrm{~mm}^{2}$ flexible	Thermostatic function - Adjustable comfort and reduced temperature - Fixed anti-frost temperature - Display of state of output, - Display of selected mode, - Push button selection of working mode: - Automatic cycle comfort T° / reduced T° - Permanent comfort temperature - Permanent reduced temperature - Permanent anti-frost temperature.	Probes EG502 can be associated with: - EK081 fixed ambient probe, - EK082 adjustable ambient probe - EK083 universal probe (see page 4.20)		
	Description	Characteristics	Width in 17.5 mm	Pack qty.	Cat Ref.
1000000	Programmable thermostat Delivered without probe	Voltage rating: $\text { 230V; } 50 \text { Hz }$	4	1	EG502
	Associate with EK081, EK082, EK083 probes	Output: 1 changeover contact 2A - 250V; AC1 2 temperature settings "comfort" and "reduced" adjustable from $+8^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$, Anti-frost temperature setting $+8^{\circ} \mathrm{C}$ (constant)			

EG502

Analogue Voltmeters, Ammeters

Digital Voltmeters, Ammeters

	Digital voltmeters SM501 For domestic and commercial installations - Three phase: use of a voltmeter selector switch SK602	Digital ammeters SM151, SM401, SM601: reading via a current transformer (see below)

Current Transformers (C.T)

Selector Switches for

Voltmeters and Ammeters

	Description For use with Voltmeters and Ammeters.	Applications Complies with IEC 947-3 BS EN 60947-3. Terminal capacity: 1- $6 \mathrm{~mm}^{2}$ - Flexible 1.5-10mm ${ }^{2}$ - Rigid	Isolating voltage 500Vac Nominal current 10-20A		
	Designation	Characteristics	Width in $17.5 \mathrm{~mm}$	Pack qty.	Cat Ref.
	Voltmeter selector 3 Ph\&N 3 readings between phases 3 readings between phase \& null position (no reading)	20A 400Vac	3	1	SK602

SK602

| Ammeter selector 20A 400Vac | 3 | 1 | SK603 |
| :--- | :--- | :--- | :--- | :--- |

4 positions
use in 3Ph\&N
reading by phase
null position (no reading)
should be used with current transformer (CT)
(see page 4.23)

SK603

Lockable rotary switch	10A 400Vac	3	1	SK606

on off (4 positions)

kiloWatt Hour Meters

	Description kiloWatt hour meters measure the active energy used in an electrical installation. The range provides meters with pulsed outputs (except EC110) for remote indication or linking into an energy management system as standard. kwH meters can be used for local metering of installations or monitoring individual machines. 2 options on resettable meters: - Total counter (non resettable) - Resettable counter (shows energy used since last reset)	Technical data 3 types - 32A (direct connection) single phase - 80A (direct connection) three phase - For other single / dual tariff products (via a CT) Displays 7 digit LCD type pulsed output -1 pulse = 100 Wh	Pulse du three ph Pulse du phase Complies	tion = tion = with IEC	$\mathrm{ms} \pm 10 \mathrm{~ms}$ ms single 036 (class 2)
	Designation	Characteristics	Width in 17.5 mm	Pack qty.	Cat Ref.
	kiloWatt hour meter single phase Voltage 230V-50Hz Direct connection $\text { In }=320 \mathrm{~mA}-32 \mathrm{~A}$ Use of heat dissipation inserts (ca of direct connection meters	Total counter Non - resettable counter ref. LZ060) are recommended	1 each side	1	EC050
EC050	kiloWatt hour meter single phase Voltage $230 \mathrm{~V}-50 \mathrm{~Hz}$ Direct connection In $=320 \mathrm{~mA}-32 \mathrm{~A}$	Non - resettable Total counter with pulsed output 1 pulse $=100 \mathrm{~Wh}$	1	1	EC051
$1 \text { 룽 }$	Use of heat dissipation inserts (cat. ref. LZO60) are recommended on each side of direct connection meters				
	kiloWatt hour meter single phase Voltage 230V-50Hz Direct connection $\ln =320 \mathrm{~mA}-32 \mathrm{~A}$	Total counter Resettable counter With pulsed output 1 pulse = 100 Wh	3	1	EC111
EC111	Use of heat dissipation inserts (cat. ref. LZO60) are recommended on each side of direct connection meters				
	kiloWatt hour meter single phase Voltage $230 \mathrm{~V}-50 \mathrm{~Hz}$	Total counter Resettable counter With pulsed output	3	1	EC120
	Connection via a current Rransformer (ln/5A) Ratio of 100/5 See page 4.23 for C.T.	$1 \text { pulse }=100 \mathrm{~Wh}$			
$=0$	Auto correction in the case of reversed CT polarity				
	kiloWatt hour meter single phase - dual tariff Voltage $230 \mathrm{~V}-50 \mathrm{~Hz}$ Connection via a current	Total counter Resettable counter With pulsed output 1 pulse = 100 Wh	3	1	EC121
EC120	Transformer (In/5A) Ratio of $100 / 5$ See page 4.23 for C.T.				

kiloWatt Hour Meters

EC320

| kiloWatt hour meter | Total counter
 Resettable counter
 three phase | 4 | 1 |
| :--- | :--- | :--- | :--- |\quad EC320

kiloWatt hour meter	Total counter	4	1	EC321
three phase - dual tariff	Resettable counter			
Voltage $3 \times 230 / 400 \mathrm{~V}-50-60 \mathrm{~Hz}$	With pulsed output			
Connection via a current	1 pulse $=100 \mathrm{~Wh}$			

Transformer ($\ln / 5 \mathrm{~A}$)
From 50A to 1500A
See page 4.23 for CT's
Balanced or unbalanced network selection also possible (i.e. 3 wire or 4 wire application) auto correction in the case of reversed CT polarity

Hours Counter

	Description To measure the total operating time of any circuit/load non resettable	Application Example \bullet Total time of plant running \bullet Connection in parallel with contactor coil
\bullet	Recording of lighting hours for relamping purposes	

Latching Relays

Technical Characteristics

	EPN510 EPN515 EPN520	EPN513 EP5N18 EP5N24	EPN519	EPN525 EPN540	EPN528 EPN541	EPN529
Voltage	230V	24V	12 V	230V	24 V	12V
Start consumption	24VA	24VA	24VA	48VA	47VA	TBC
Contact rating AC1				16A 250V~*		
Electrical endurance $A C 1-16 A$	150,000 operations					
Mechanical endurance	500,000 operations					
Current in open position	8 mA					
Max duration of voltage supply to coil	1 h					
Min duration of current supply to coil	0.1 s					
Working temperature	-5 to $+40^{\circ} \mathrm{C}$					
Storage temperature	-40 to $+80^{\circ} \mathrm{C}$					
Connections Coil Flexible Rigid	0.5 to $4 \mathrm{~mm}^{2}$ 1 to $6 \mathrm{~mm}^{2}$					
Power Flexible Rigid	1 to $6 \mathrm{~mm}^{2}$ 1.5 to $10 \mathrm{~mm}^{2}$					

*400V~ for the EPN540 and EPN541.

Auxiliary Contacts (EPN051)

The range of latching relays have been designed for use with an auxiliary contact. The devices simply clip on the side of the relay.

Technical Characteristics

	EPN	EPN051
Voltage	(a) 24 to 230V	-
Contact Rating	-	$2 \mathrm{~A} / 250 \mathrm{~V}$
Imin / 230V	-	15 mA
Connection		
Flexible	$6 \mathrm{~mm}^{2}$	
Rigid	$10 \mathrm{~mm}^{2}$	

(a) : Voltage dependant on associated relay

Choice of Contactors

Heating

The choice of the contactor depends on the mechanical resistance (number of operations) and on the electrical heating load i.e. resistive elements, infra-red element, convectors

Choice of Contactors

The choice of contactor is dependant upon many parameters i.e. operating voltage, size of contacts, number of operations, ambient temperature, type of load supplied etc

Type of Load

Loads are categorised into various $A C$ ratings, (AC1, AC2, AC3 etc.) and the higher the $A C$ rating the more inductive the load becomes. All Hager contactor ratings are given at AC1, therefore they must be de-rated if used on other types of AC load.

Heat Dissipation Inserts

The ambient temperature around a contactor can affect its life expectancy, therefore, we strongly recommend that heat dissipation inserts (LZO60) are fitted between all contactors and adjacent devices.Please consult your Local Regional Office, if you require help selecting a suitable contactor.

Single Phase				Three Phase			
Number of operations	50,000	100,000	150,000	200,000	300,000	Single phase 230V	Three phase*400V
	4.4	4.4	3.9	3.5	2.9	ES220-ES230	
	7.8	5.9	5	4.4	3.7	ESN240	
Maximum	12	8.8	7.7	6.6	5.9	ESN263	
load*	12	10.5	8.5	6.5	5.8		ESN320-ESN430
in kW	23.2	17.7	15	13.1	10.8		ESN340

* On three phase configuration the maximum load per phase corresponds to the values states divided by 3.

Example:
Function of a heating installation 200 days/annum, 100 operations per day (1 opening +1 closing $=2$ operations) Mechanical life $=10$ years
Total number of operations: $200 \times 100 \times 10=200,000$
in that case select an ES240 to control a load of 4.4 kW (single phase 230V)

Motors
Single Phase 230V

	Single phase with capacitor$230 \mathrm{~V}$	Three phase (AC3 cat.) 400V	Choice of contactor according to control diagram	
			2 wires	3 wires
Maximum load in kW	1.1		ES220	
	2.2		ESN240	
		4		ESN320 - ESN420
		7.5		ESN340-ES345
		15		ESN365

Requirements of use

Influence of working temperature:
Derating factor between $40^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}: 0.9$
Example: Heating with convector
The maximum load of ES220 is 4.4 kW for 50,000 operations and for

Three Phase 400V

Choice of contactor according
to control diagram

220
a temperature $<40^{\circ} \mathrm{C}$.
between $40^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$, the load is 4.4×0.9 i.e. 3.96 kW

Close fitting:

It is necessary to put a heat dissipation insert (reference LZO60) between each contactor.

Technical Characteristics

		Contactors								Relays ER124	Interface Relay	
		ET201 ES220 ET221 ES230 ESN430 ES237	ESN320 ESN340 ESN420 ESN345 ES238 ES441 ESN480	ES240 ESN365 ES463B ESN470 ES440B	ESN263 ESN490	ES224	ESN424	ER120 ER135	ER123 ER138	ER124 ER139	EN146	EN145
Command voltage	V	230	230	230	230	24	24	230	24	12	230	10 to 26
Frequency Hz	\%	$\left.\begin{array}{ll}+10 /-15 \\ 50\end{array}\right\}$ For all products										$50 / 60 \mathrm{~Hz}$ and ...
Starting consumption	VA	15	20	50	50	15	20	15/20	15/20	15/20	5	(a)
Maintained consumption	VA	5	5	7	7	5	5	5	5	5	5	(a)
Max perm. Current AC1	A	20	20	40	63	20	20	16	16	16	5	5
Insulation voltage	V	250	400	400	400	400	250	250	250	250	250	250
Mech. endurance Working temperature Storage temperature	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 1,000,000 \\ & -10 /+50 \\ & -40 /+80 \end{aligned}$		For all prod	roducts					
Connection Control flexible rigid Power flexible rigid	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 0.5 \text { to } 4 \\ & 1 \text { to } 6 \\ & 1 \text { to } 6 \\ & 1.5 \text { to } 10 \end{aligned}$	$\begin{aligned} & 0.5 \text { to } 4 \\ & 1 \text { to } 6 \\ & 1 \text { to } 6 \\ & 1.5 \text { to } 10 \end{aligned}$	1 to 2.5 1.5 to 4 4to25	1 to 2.5 1.5 to 4 4to25	0.5 to 4 1 to 6 1 to 6 1.5 to10	0.5 to 4 1 to 6 1 to 6 1.5 to10	0.5 to 4 1 to 6 1 to 6 1.5 to 10	$\begin{aligned} & 0.5 \text { to } 4 \\ & 1 \text { to } 6 \\ & 1 \text { to } 6 \\ & 1.5 \text { to } 10 \end{aligned}$	$\begin{aligned} & 0.5 \text { to } 4 \\ & 1 \text { to } 6 \\ & 1 \text { to } 6 \\ & 1.5 \text { to } 10 \end{aligned}$	0.5 to 4 1 to 6 0.5 to 4 1to6	$\begin{aligned} & 0.5 \text { to } 4 \\ & 1 \text { to } 6 \\ & 0.5 \text { to } 4 \\ & 1 \text { to6 } \end{aligned}$

Note: (a) Power consumption of EN145 and EN146

Control Voltage	Start and Maintained Consumption
12 V DC	0.5 W
24 V DC	1.5 W
12 V AC	1 VA
24 V ac	2 VA

Auxiliary Contacts

Auxiliary contacts are available for 20A contactors to indicate remotely the status of the main contacts - Cat Ref. EP071

20A Relays and contactors with manual override

1. Permanently on
2. Automatic
3. Permanently off

hager

Contactors \& Relays

Contactor Selection

The table below indicates the number of lamps that can be connected to each pole of the contactor on 230 V 50 Hz circuits.

Type			16A		20A		40A		63A	
Incandescent Lamps										
Tungsten filament and halogen 230V	$\begin{aligned} & 40 \mathrm{~W} \\ & 60 \mathrm{~W} \\ & 75 \mathrm{~W} \\ & 100 \mathrm{~W} \\ & 150 \mathrm{~W} \\ & 200 \mathrm{~W} \\ & 300 \mathrm{~W} \\ & 500 \mathrm{~W} \\ & 1000 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 45 \\ & 30 \\ & 24 \\ & 18 \\ & 12 \\ & 9 \\ & 5 \\ & 3 \\ & 1 \end{aligned}$		50 35 28 21 14 10 6 4 2		100 75 65 45 33 25 16 10 5		120 105 90 65 45 35 23 14 7	
Halogen 12 or 24 V with transformer electronic	$\begin{aligned} & 20 \mathrm{~W} \\ & 50 \mathrm{~W} \\ & 75 \mathrm{~W} \\ & 100 \mathrm{~W} \\ & 150 \mathrm{~W} \end{aligned}$		$\begin{aligned} & \hline 70 \\ & 28 \\ & 19 \\ & 14 \\ & 9 \end{aligned}$		$\begin{aligned} & 80 \\ & 40 \\ & 26 \\ & 20 \\ & 13 \end{aligned}$		$\begin{aligned} & \hline 160 \\ & 80 \\ & 52 \\ & 40 \\ & 26 \end{aligned}$		$\begin{aligned} & \hline 240 \\ & 120 \\ & 78 \\ & 60 \\ & 39 \end{aligned}$	
Fluorescent Tubes										
Single with starter non compensated	$\begin{aligned} & 15 \mathrm{~W} \\ & 18 \mathrm{~W} \\ & 30 \mathrm{~W} \\ & 36 \mathrm{~W} \\ & 58 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 29 \\ & 25 \\ & 25 \\ & 24 \\ & 14 \end{aligned}$		$\begin{aligned} & 50 \\ & 42 \\ & 35 \\ & 30 \\ & 20 \end{aligned}$		$\begin{aligned} & 110 \\ & 80 \\ & 70 \\ & 60 \\ & 40 \end{aligned}$		$\begin{aligned} & 150 \\ & 130 \\ & 110 \\ & 90 \\ & 60 \end{aligned}$	
Single with starter in parallel	$\begin{aligned} & 15 \mathrm{~W} \\ & 18 \mathrm{~W} \\ & 30 \mathrm{~W} \\ & 36 \mathrm{~W} \\ & 58 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \\ & 20 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { C Max. } \\ & 112 \mu \mathrm{~F} \\ & 112 \mu \mathrm{~F} \\ & 90 \mu \mathrm{~F} \\ & 90 \mu \mathrm{~F} \\ & 67 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 25 \\ & 25 \\ & 17 \end{aligned}$	C Max. $135 \mu \mathrm{~F}$ $135 \mu \mathrm{~F}$ $112 \mu \mathrm{~F}$ $112 \mu \mathrm{~F}$ $76 \mu \mathrm{~F}$	$\begin{aligned} & 45 \\ & 45 \\ & 40 \\ & 40 \\ & 22 \end{aligned}$	$\begin{aligned} & \text { C Max. } \\ & 202 \mu \mathrm{~F} \\ & 202 \mu \mathrm{~F} \\ & 180 \mu \mathrm{~F} \\ & 180 \mu \mathrm{~F} \\ & 99 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 55 \\ & 55 \\ & 40 \end{aligned}$	C Max $270 \mu \mathrm{~F}$ $270 \mu \mathrm{~F}$ $247 \mu \mathrm{~F}$ $247 \mu \mathrm{~F}$ $180 \mu \mathrm{~F}$
Double with starter compensated	$\begin{aligned} & 2 \times 18 \mathrm{~W} \\ & 2 \times 20 \mathrm{~W} \\ & 2 \times 36 \mathrm{~W} \\ & 2 \times 40 \mathrm{~W} \\ & 2 \times 58 \mathrm{~W} \\ & 2 \times 65 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 2.7 \mu \mathrm{~F} \\ & 2.7 \mu \mathrm{~F} \\ & 3.4 \mu \mathrm{~F} \\ & 3.4 \mu \mathrm{~F} \\ & 5.3 \mu \mathrm{~F} \\ & 5.3 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 22 \\ & 22 \\ & 12 \\ & 12 \\ & \hline \end{aligned}$		45 45 26 26 13 13		$\begin{aligned} & 90 \\ & 90 \\ & 50 \\ & 50 \\ & 23 \\ & 23 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 140 \\ & 140 \\ & 100 \\ & 100 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$	
Single with electronic ballast	$\begin{aligned} & 18 \mathrm{~W} \\ & 36 \mathrm{~W} \\ & 58 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 30 \\ & 26 \\ & 15 \end{aligned}$		$\begin{aligned} & 35 \\ & 30 \\ & 17 \end{aligned}$		$\begin{aligned} & 60 \\ & 32 \\ & 25 \end{aligned}$		$\begin{aligned} & 80 \\ & 45 \\ & 30 \end{aligned}$	
Double with electronic ballast	$\begin{aligned} & 2 \times 18 \mathrm{~W} \\ & 2 \times 36 \mathrm{~W} \\ & 2 \times 58 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 15 \\ & 13 \\ & 8 \end{aligned}$		$\begin{aligned} & 17 \\ & 15 \\ & 9 \end{aligned}$		$\begin{aligned} & 30 \\ & 16 \\ & 12 \end{aligned}$		$\begin{aligned} & 40 \\ & 22 \\ & 15 \end{aligned}$	
Compact flourescent with electromagnetic ballast, without compensation	$\begin{aligned} & 7 \mathrm{~W} \\ & 10 \mathrm{~W} \\ & 18 \mathrm{~W} \\ & 26 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 50 \\ & 45 \\ & 40 \\ & 25 \end{aligned}$		$\begin{aligned} & 55 \\ & 50 \\ & 42 \\ & 27 \end{aligned}$		$\begin{aligned} & 100 \\ & 90 \\ & 65 \\ & 50 \\ & \hline \end{aligned}$		$\begin{aligned} & 130 \\ & 115 \\ & 90 \\ & 80 \end{aligned}$	
Compact flourescent with electronic supply incorporated	$\begin{aligned} & 11 \mathrm{~W} \\ & 15 \mathrm{~W} \\ & 20 \mathrm{~W} \\ & 23 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 80 \\ & 60 \\ & 50 \\ & 40 \\ & \hline \end{aligned}$		$\begin{aligned} & 85 \\ & 63 \\ & 52 \\ & 42 \end{aligned}$		$\begin{aligned} & 110 \\ & 100 \\ & 70 \\ & 60 \end{aligned}$		$\begin{aligned} & 150 \\ & 130 \\ & 110 \\ & 100 \end{aligned}$	
Discharge Lamps High pressure mercury without compensation	$\begin{aligned} & 50 \mathrm{~W} \\ & 80 \mathrm{~W} \\ & 125 \mathrm{~W} \\ & 250 \mathrm{~W} \\ & 400 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 11 \\ & 9 \\ & 7 \\ & 3 \\ & 1 \end{aligned}$		$\begin{aligned} & 12 \\ & 10 \\ & 8 \\ & 3 \\ & 2 \\ & \hline \end{aligned}$		$\begin{aligned} & 36 \\ & 27 \\ & 19 \\ & 10 \\ & 7 \end{aligned}$		$\begin{aligned} & 50 \\ & 38 \\ & 26 \\ & 14 \\ & 10 \end{aligned}$	
High pressure mercury with parallel compensation	$\begin{aligned} & 50 \mathrm{~W} \\ & 80 \mathrm{~W} \\ & 125 \mathrm{~W} \\ & 250 \mathrm{~W} \\ & 400 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 9 \\ & 7 \\ & 5 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$	C Max. $63 \mu \mathrm{~F}$ $49 \mu \mathrm{~F}$ $50 \mu \mathrm{~F}$ $54 \mu \mathrm{~F}$ $25 \mu \mathrm{~F}$	$\begin{aligned} & 10 \\ & 8 \\ & 6 \\ & 3 \\ & 2 \\ & \hline \end{aligned}$	C Max. $70 \mu \mathrm{~F}$ $56 \mu \mathrm{~F}$ $60 \mu \mathrm{~F}$ $54 \mu \mathrm{~F}$ $50 \mu \mathrm{~F}$	$\begin{aligned} & 25 \\ & 21 \\ & 14 \\ & 7 \\ & 4 \\ & \hline \end{aligned}$	C Max. $175 \mu \mathrm{~F}$ $147 \mu \mathrm{~F}$ $140 \mu \mathrm{~F}$ $126 \mu \mathrm{~F}$ $100 \mu \mathrm{~F}$	$\begin{aligned} & 30 \\ & 25 \\ & 17 \\ & 9 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { C Max. } \\ & 210 \mu \mathrm{~F} \\ & 175 \mu \mathrm{~F} \\ & 170 \mu \mathrm{~F} \\ & 162 \mu \mathrm{~F} \\ & 150 \mu \mathrm{~F} \\ & \hline \end{aligned}$
Mixed	$\begin{aligned} & 100 \mathrm{~W} \\ & 160 \mathrm{~W} \\ & 250 \mathrm{~W} \\ & 400 \mathrm{~W} \end{aligned}$		$\begin{aligned} & \hline 9 \\ & 6 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$		10 7 4 2		$\begin{aligned} & 22 \\ & 19 \\ & 11 \\ & 8 \end{aligned}$		$\begin{aligned} & \hline 33 \\ & 27 \\ & 15 \\ & 11 \\ & \hline \end{aligned}$	
High pressure sodium vapour or metal halide without compensation	$\begin{aligned} & 70 \mathrm{~W} \\ & 150 \mathrm{~W} \\ & 250 \mathrm{~W} \\ & 400 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 9 \\ & 5 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$		10 6 4 2		$\begin{aligned} & 20 \\ & 10 \\ & 6 \\ & 4 \end{aligned}$		$\begin{aligned} & 30 \\ & 15 \\ & 10 \\ & 6 \end{aligned}$	
High pressure sodium vapour or metal halide with compensation	$\begin{aligned} & 70 \mathrm{~W} \\ & 150 \mathrm{~W} \\ & 250 \mathrm{~W} \\ & 400 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & 1 \end{aligned}$	C Max. $60 \mu \mathrm{~F}$ $54 \mu \mathrm{~F}$ $32 \mu \mathrm{~F}$ /	$\begin{aligned} & 6 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$	C Max. $72 \mu \mathrm{~F}$ $54 \mu \mathrm{~F}$ $64 \mu \mathrm{~F}$ $50 \mu \mathrm{~F}$	$\begin{aligned} & 15 \\ & 9 \\ & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { C Max. } \\ & 180 \mu \mathrm{~F} \\ & 162 \mu \mathrm{~F} \\ & 160 \mu \mathrm{~F} \\ & 150 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 20 \\ & 16 \\ & 7 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { C Max. } \\ & 240 \mu \mathrm{~F} \\ & 198 \mu \mathrm{~F} \\ & 224 \mu \mathrm{~F} \\ & 250 \mu \mathrm{~F} \end{aligned}$

Technical Specifications

	EH011	EH010	EH111	EH110	EH171	EG103	EG103E	EG103V	EG203	EG203E	EG400
Width in 17.5 mm	1	1	3	3	3	2	2	2	2	2	4
Version	Daily	Daily	Daily	Daily	Weekly \& Annual						
Voltage supply	$\begin{aligned} & 230 \mathrm{~V} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \hline 230 \mathrm{~V} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$
Consumption	0.5VA	0.5 VA	0.5VA	0.5VA	0.5VA	0.5 VA	6VA	0.8VA	6VA	6VA	2 VA
Output	1 NO Contact Volt free	1 NO Contact Volt free	$1 \mathrm{c} / \mathrm{o}$ Contact Volt free	$1 \mathrm{c} / \mathrm{o}$ Contact Volt free	c/o Contact Volt free	1 volt free Changeover Contact	1 volt free Changeover Contact	1 volt free Changeover Contact	2 volt free Changeover Contact	2 volt free Changeover Contact	3 volt free 1 NO Changeover Contact Contact
Switching capacity AC1	$\begin{aligned} & 16 \mathrm{~A} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A} \mathrm{AC1} \\ & / 250 \mathrm{~V} \\ & 4 \mathrm{ADC} 1 / \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A} \mathrm{AC1} \\ & \text { /250V } \\ & 4 \mathrm{~A} \mathrm{DC1/} \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A} \mathrm{AC1} \\ & \text { /250V } \\ & 4 \mathrm{~A} \mathrm{DC1/} \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A} \mathrm{AC1} \\ & \text { /250V } \\ & 4 \mathrm{~A} \mathrm{DC1/} \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A} A C 1 \\ & / 250 \mathrm{~V} \\ & 4 \mathrm{~A} \mathrm{DC} 1 / \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~A} \mathrm{AC1} \\ & \text { /250V } \\ & 4 \mathrm{~A} \mathrm{DC1/} \\ & 12 \mathrm{~V} \end{aligned}$
Inductive load $\cos 0.6$	$\begin{aligned} & \hline 4 \mathrm{~A} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4 \mathrm{~A} / \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4 \mathrm{~A} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4 \mathrm{~A} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~A} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 250 \mathrm{~V} \end{aligned}$
Incandescent lamp	900W	900W	900W	900W	900W	2300W	2300W	2300W	2300W	2300W	2300W
Halogen lighting 230V	-	-	-	-	-	2300W	2300W	2300W	2300W	2300W	2300W
$\begin{aligned} & \hline \text { Compensated } \\ & \text { fluorescent tubes } \\ & \text { // (max. } 45 \mu \mathrm{~F} \text {) } \end{aligned}$	-	-	-	-	-	400w	400w	400w	400w	400w	400W
Non compensated fluorescent tubes compen. in series	-	-	-	-	-	1000W	1000W	1000W	1000W	1000W	1000W
Compact fluorescent tubes	-	-	-	-	-	500W	500W	500W	500W	500W	500W
Minimum current AC1	-	-	-	-	-	$\begin{aligned} & 100 \mathrm{~mA} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~mA} / \\ & 250 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & 100 \mathrm{~mA} \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~mA} / \\ & 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~mA} \\ & 250 \mathrm{~V} \end{aligned}$
DC 1	-	-	-	-	-	-	-	$\begin{aligned} & 100 \mathrm{~mA} \\ & 12 \mathrm{~V} \end{aligned}$	-	-	-
Galvanic insulation between power supply and output	-	-	-	-		< 4 KV					
Characteristics Technology	Quartz	Quartz	Quartz	Quartz	Quartz	-	-	-	-	-	-
Dial	24h	24h	24h	24h	7 days	-	-	-	-	-	-
Minimum switching	5 min	5 min	5 min	5 min	2 h	-	-	-	-	-	-
Programming capacity	-	-	-	-	-	56 steps	102 steps				
Minimum time between 2 steps	-	-	-	-	-	1 min					
Working accuracy	$\begin{aligned} & \hline \text { 1s } \\ & \text { per day } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1s } \\ \text { per day } \end{array}$	$\begin{aligned} & \text { 1s } \\ & \text { per day } \end{aligned}$	$\begin{aligned} & \text { 1s } \\ & \text { per day } \end{aligned}$	$\begin{aligned} & \text { 1s } \\ & \text { per day } \end{aligned}$	$\begin{aligned} & +/-1.5 \\ & \mathrm{sec} / 24 \mathrm{~h} \end{aligned}$	$\begin{aligned} & +/-1.5 \\ & \mathrm{sec} / 24 \mathrm{~h} \end{aligned}$	$\begin{aligned} & +/-1.5 \\ & \mathrm{sec} / 24 \mathrm{~h} \end{aligned}$	$\begin{aligned} & +/-1.5 \\ & \mathrm{sec} / 24 \mathrm{~h} \end{aligned}$	$\begin{aligned} & +/-1.5 \\ & \mathrm{sec} / 24 \mathrm{~h} \end{aligned}$	$\begin{aligned} & +/-1.5 \\ & \mathrm{sec} / 24 \mathrm{~h} \end{aligned}$
Supply failure reserve	200h	no	200h	no	200h	5 years lithium bat.	5 years lithium bat	$\begin{aligned} & 100 \mathrm{hrs} \\ & \text { lithium bat } \end{aligned}$			
Reached in	120h	120h	120h	120h	120h	-	-	-	-	-	-
Manual switch type	$\begin{aligned} & \text { ON } \\ & \text { Auto } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \hline \text { OFF } \\ & \text { Auto } \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { OFF } \\ & \text { Auto } \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { OFF } \\ & \text { Auto } \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { OFF } \\ & \text { Auto } \\ & \text { ON } \\ & \hline \end{aligned}$				-		-
Protection degree	-	-	-	-	-	IP20	IP20	IP20	IP20	IP20	IP20
Environment Working temperature	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to } \\ & +45^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to } \\ & +45^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to } \\ & +45^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to } \\ & +45^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to } \\ & +45^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -5^{\circ} \mathrm{C} \text { to } \\ & +45^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -5^{\circ} \mathrm{C} \text { to } \\ & +45^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{array}{r} -5^{\circ} \mathrm{C} \text { to } \\ +45^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & -5^{\circ} \mathrm{C} \text { to } \\ & +45^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{array}{r} -5^{\circ} \mathrm{C} \text { to } \\ +45^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & -5^{\circ} \mathrm{C} \text { to } \\ & +45^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Storage temperature	$\begin{aligned} & -100^{\circ} \mathrm{C} \text { to } \\ & +50^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -100^{\circ} \mathrm{C} \text { to } \\ & +50^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -100^{\circ} \mathrm{C} \text { to } \\ & +50^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -100^{\circ} \mathrm{C} \text { to } \\ & +50^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -100^{\circ} \mathrm{C} \text { to } \\ & +50^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -20^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -20^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -20^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -20^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -20^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -20^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$
Connection Flexible Rigid		0.5 to 4 mm \qquad	$\begin{aligned} & 0.5 \text { to } \\ & 4 \mathrm{~mm} \\ & -\quad \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \text { to } \\ & 4 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 0.5 \text { to } \\ & 4 \mathrm{~mm} \\ & -\quad \\ & \hline \end{aligned}$	1.5 to $10 \mathrm{~mm}^{2}$ 1 to $6 \mathrm{~mm}^{2}$	1.5 to $10 \mathrm{~mm}^{2}$ 1 to $6 \mathrm{~mm}^{2}$	1.5 to $10 \mathrm{~mm}^{2}$ 1 to $6 \mathrm{~mm}^{2}$	1.5 to $10 \mathrm{~mm}^{2}$ 1 to $6 \mathrm{~mm}^{2}$	1.5 to $10 \mathrm{~mm}^{2}$ 1 to $6 \mathrm{~mm}^{2}$	1 to $4 \mathrm{~mm}^{2}$ $1.5-6 \mathrm{~mm}^{2}$

EH010-EH011
$230 \mathrm{VM} \pm 510$ \% 50/60 Hz

EH110-EH111- EH171
$230 \mathrm{~V} \pm 10 \% 50 / 60 \mathrm{~Hz}$

Modular－ 1 Channel Electronic Time Switch Weekly Cycle

1 Channel Electronic Time Switches Weekly Cycle

EG103
EG103E with override entry，
EG103V with $12-24 \mathrm{~V}$ voltage supply
1 Channel

Keys
（1）Menu ：Selection of operating mode
Auto ：Mode of running according to the program selected．
Prog ：New for programming mode．
Prog ：Modif to modify an existing program．
＜Checking of the program．
（）：Modification of time，date and selection of the winter／ summer time change mode．
（1）：Holidays．
（2）+ and－：Navigation or setting of values．
（m）：In auto，mode，selection of overrides，waivers or random operation
（3）OK ：To validate flashing information on display．
（4） $4 \ldots$ ：To return to the previous step．
You may return into auto mode at any moment using menu．
If no action is taken for 1 min ，the switch returns into auto mode．

Major characteristics

－Product delivered with current time and date set
－Automatic change of winter／summer time
－Programming key
－For permanent waivers
－For program copy or save
－Programming for day or group of days
－ 56 program steps On，Off
－Impulses $\Omega(1 \mathrm{sec} \text { to } 30 \mathrm{~min})^{\star}$

- Permanent overrides On or Off（ 仿 permanent light on）
- Temporary overrides On or Off（ 住 flashing）
- Holiday mode 自：overrides On or Off between two dates＊
－Simulation of presence $\overbrace{}^{*}$
－Display bar graph of daily profile
－Keyboard locking possible \AA
－Programmable with power off
－Back lit display＊
＊Evolution models E or V only

Connection Diagram

EG103，EG103E EG103V

2 Channel Electronic Time Switch Weekly Cycle

2 channel electronic time switches weekly cycle.
EG203
EG203E

Major characteristics

- Product delivered with current time and date set
- Automatic change of winter / summer time
- Programming key
- For permanent waivers
- For program copy or save
- Programming for day or group of days
- 56 program steps On, Off
- Impulses Ω (1 sec to 30 min$)^{*}$
- Permanent overrides On or Off (侐 permanent light on)
- Temporary overrides On or Off (© \mathbb{m} flashing)
- Holiday mode \mathbb{D} : overrides On or Off between two dates*
- Simulation of presence O^{*}
- Display bar graph of daily profile
- Keyboard locking possible $\frac{\text { I }}{}$
- Programmable with power off
- Back lit display*
* evolution models E only

Connection diagram

L

EG203, EG203E

Keys

(1) Menu : Selection of operating mode

Auto : Mode of running according to the program selected.
Prog : New for programming mode.
Prog : Modif to modify an existing program.
© : Checking of the program.
(L) : Modification of time, date and selection of the winter / summer time change mode
(1) : Holidays.
(2) +and- : Navigation or setting of values.

A TM - : In auto, mode, selection of overrides,
B (1 - - Waivers or random operation
(3) ok : To validate flashing information on display.
(4) $<\cdots$: To return to the previous step.

You may return into auto mode at any moment using menu.
If no action is taken for 1 min , the switch returns into auto mode.

Digital Time Switch - EG010

Technical Specifications

Electrical Characteristics

- Voltage supply : $230 \mathrm{~V}+10 /-10 \% 50 / 60 \mathrm{~Hz}$
- Consumption: 1VA
- Output : 1 changeover contact

16A - 250V ;AC1
$3 \mathrm{~A}-250 \mathrm{~V}$ cosw $=0.6$
1000W incandescent lighting

Functional Characteristics

- 5 adjustable pre-recorded programs
- Accuracy: +/- 6 min / year
- Supply failure reserve: total of 3 years

Environment

- Working temperature: -10 to $+50^{\circ} \mathrm{C}$
- Storage temperature: -10 to $+60^{\circ} \mathrm{C}$

Connection Capacity

- 1 to $4 \mathrm{~mm}^{2}$

Main Characteristics

- Easy to program: 5 programs are pre-recorded. The user just have to select the program which corresponds to its use and modify time switches if necessary.

The 5 pre-registered programs are as follows

P	Prog				
PO	OFF				
P1	ON				
P2	\qquad				
P3	$6.00 \quad 8.00$				23.00
P4	$\begin{aligned} & \square .00 \quad 8.00 \end{aligned}$	11.00	13.00	17.00	23.00

Product Presentation

Digital Time Switch - EG071

Technical Specifications

Electrical Characteristics

- Voltage supply : $230 \mathrm{~V}+10 /-10 \% 50 / 60 \mathrm{~Hz}$
- Consumption: 1VA
- Output : 1 changeover contact

$$
\begin{aligned}
& 16 \mathrm{~A}-250 \mathrm{~V} ; \mathrm{AC} 1 \\
& 3 \mathrm{~A}-250 \mathrm{~V} \text { cosw }=0.6 \\
& 1000 \mathrm{~W} \text { incandescent lighting }
\end{aligned}
$$

Functional Characteristics

- 20 program steps
- Each program step can be applied to one of several days
- Accuracy: +/- 6 min / year
- Supply failure reserve: total of 3 years

Environment

- Working temperature: -10 to $+50^{\circ} \mathrm{C}$
- Storage temperature: -10 to $+60^{\circ} \mathrm{C}$

Connection Capacity

- 1 to $4 \mathrm{~mm}^{2}$

Product Presentation

Electrical Connection

Delay Timers

Delay timer devices are used to control a variety of processes where the requirement is for switching circuits on, off or delaying the on or off switching for a pre-set period of time. Typical device types are...

- Delay on - intended to delay the starting or switching of a circuit for a set period of time following the command signal e.g. to delay the starting of motor loads where a large number of motors are to be started by the same switch to reduce the effects of the starting currents.
- Delay off - intended to delay the stopping or switching off of a circuit for a set period of time following the removal of the com mand signal e.g. to overrun an extractor following the switching off of a process that creates fumes.
- Adjustable time on - intended to switch on for a set period, the command signal must remain on throughout the set period e.g. to switch on two sets of heaters with one set (the boost) switching off after the set period.
- Impulse timer - intended to switch on for a set period, the command signal length is not important e.g. to boost a time clock controlled circuit such as a water storage heater.
- Symmetrical timer - intended to toggle a circuit on and off in regular time patterns e.g. to run an extractor intermittently.

Multifunction timer - 6 individual functions
A = Timer.
$B=$ Delay off (output relay opens either at end of command or after set time period - which ever is shorter).
C = Delay off
D = Delay on.
$\mathrm{E}=$ Delay on (output relay closes either at end of command or after set time period - which ever is shorter).
F = Symmetrical timer.
On selection - contact permanently closed
Off selection - contact permanently open
Output relay open - with no command
Output relay open - with command singal running
Output relay closed - with command signal running
U. Output relay close - with command signal removed

- Output relay closed (EZOO5)

Delay On

EZO01 \& EZ006 Function D

Delay Off
EZO02 \& EZ006 Function C

Adjustable Time On EZOO3 \& EZ006 Function E

Impulse Timer
EZO04 \& EZ006 Function A

Symmetrical Timer EZ005 \& EZ006 Function F

Technical Specifications	
Product	EZ001, EZO02, EZ003, EZ004, EZ005, EZ006.
Electrical characteristics Supply voltage	24-28 Vdc (+10\% - 15\%) terminals A1 \& A2 24-230 Vac (+10\% - 15\%) terminals A1 \& A2 $12 \mathrm{Vac} \& \mathrm{dc}(+10 \%-10 \%)$ terminals A3 \& A2
Output	1 volt free C/O contact
Life expectancy Max load AC1 Incandescent Fluorescent non comp. Inductive load 0.6pf	10A / 230V~ 50,000 cycles 450W~ 100,000 cycles 600W~50,000 cycles 5A / 230V~100,000 cycles
Min power AC DC	100 mA at 230 V 100 mA at 12 V
Galvanic isolation	2 kV
Standard / Norm	EN60669-2-1
Functional characteristics Timer range	0.1s - 10 hours
Min. command period AC DC	50 ms 30 ms
Operating temperature Working Storage	$\begin{aligned} & -20^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \end{aligned}$
Connection Capacity Flexible Rigid	$\begin{aligned} & 1-6 \mathrm{~mm}^{2} \\ & 1.5-10 \mathrm{~mm}^{2} \end{aligned}$

EZ002, EZ004, EZOO6 (functions A,B,C) indicator light (for versions with NO contact).
ON
OFF

Each time delay bracket is divided into 4 ranges

Time Delay Brackets	1 s to 1 h	0.1 min to 10 h	0.1 s to 10 min	0.2 min to 20 h
Ranges	1 s to 10 s	0.1 min to 1 min	0.1 s to 1 s	0.2 min to 2 min
	0.1 min to 1 min	1 min to 10 min	1 s to 10 s	2 min to 20 min
	1 min to 10 min	0.1 h to 1 h	0.1 min to 1 min	0.2 h to 2 h
	0.1 h to 1 h	1 h to 10 h	1 min to 10 min	2 h to 20 h

Environment

working temperature: $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
storage temperature: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Time Lag Switches

Time Lag Switches

A common area where time delay devices are used is stairways and corridors in multi occupancy buildings where they provide a level of energy efficiency. The EM001N device provides basic time lag control that can be enhanced to offer a pre-warning by adding a EM002 device, suitable only for incandescent and halogen loads up to 1000W.

Technical Specifications Cat Ref.	EM001N	EM002
Electrical characteristics Supply voltage	$\begin{aligned} & 230 \mathrm{~V}+10-15 \% \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V}+10-15 \% \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$
Consumption	1VA	0.5 W permanent 8 W max.
Size	1	-
Breaking capacity AC1	16A 230V AC	4A 230V~
Incandescent	2300W	1000W
Halogen 230V	2300W	1000W
Fero magnetic transformer	1600W	-
Parallel compensated	Capacitor $112 \mu \mathrm{~F}$	-
Fluorescent lamps	1000W	
Series compensated	3600W	-
Fluorescent lamps		
Electronic transformer	2300W	-
Compact fluorescent lamps with electronic ballast with conventional ballast	$\begin{aligned} & 60 \times 7 \mathrm{~W} \text { or } \\ & 40 \times 11 \mathrm{~W} \text { or } \\ & 32 \times 15 \mathrm{~W} \text { or } \\ & 20 \times 23 \mathrm{~W} \\ & 2300 \mathrm{~W} \end{aligned}$	-
Functional characteristics Time delay	30 s to 10 min	24s
Retrigger	Yes	-
Max. current in rest position	100 mA	-
Automatic 3/4 recognition	Yes	-
Local command	Automatic / Override ON	-
Environment Working temperature	-10 to $+55^{\circ} \mathrm{C}$	-15 to $+55^{\circ} \mathrm{C}$
Storage temperature	-20 to $+60^{\circ} \mathrm{C}$	-25 to $+70^{\circ} \mathrm{C}$
Connection Flexible (mm^{2})	1 to 6	1 to 6
Rigid (mm^{2})	1.5 to 10	1.5 to 10
Connection EM001/EM002	-	2 wires 1.5

Wiring Diagrams

4-Wire

Combination EM002 with EM001N

Light Sensitive Switches

Light Sensitive Switches

Using light sensitive switches can prevent the unnecessary use of lighting circuits where sufficient daylight exists. The benefit of modular devices is the facility to set the ambient lighting level at which the device will operate, and as the device is fitted at the distribution point prevent unauthorised tampering. The remote photocell unit can be mounted up to a distance of 50 metres from the device. Two devices are available the standard EE100 light sensitive switch and an enhanced programmable version the EE171 that allows time clock control also.

Principle of Operation

Both devices control lighting systems according to natural illumination;

- The user sets the working level:
- The photo cell measures the external light level

The output of the EE100 is:

- ON, when the measured level is lower than the pre-set light level
- OFF, when the measured level is higher than the pre-set light level

The output of the EE171 during the programmed ON time period is:

- ON, when the measured level is lower than the pre-set light level
- OFF, when the measured level is higher than the pre-set light level

The output of the EE171 during the programmed off time period is:

- OFF, regardless of the lighting level

The light sensitive switches include a built in time delay which avoids unnecessary switching due to temporary factors such as car headlight beams etc...

Description

The programmable light sensitive switch EE171 has two main functions:

- Light sensitive switch comprising
(1) Override selector switch to allow permanent ON or OFF, auto or test mode
(2) Lighting range selector
(3) Potentiometer to set light level
(4) Indicator to show output switching status
- A programmer to establish the automatic operating cycle

The programmer comprises 4 keys:
(5) ON / OFF to choose whether the circuit is on or off.
(6) Prog to set the program and scroll program steps
(7) Reset
(8) + and - to change settings

Mounting the Cell

To ensure correct operation of the light sensitive switch, the cell must not be influenced by artificial light or direct solar radiation and should be sheltered from dust and humidity. In case of disconnection of the link between the cell and the light sensitive switch, the output of the device will be switched on. Make sure the light sensitive switch is unplugged before connecting the cell.

Cells	EE002	EE003					
Type	Flush mounting	Surface mounting					
Dimensions (mm)	$89 \times 48 \times 32$	$25 \times 25 \times 20$ hole O					
25 mm			$	$	Connection	cable $1 \mathrm{~m} 2 \times 0.75 \mathrm{~mm}^{2}$	0.75 to $4 \mathrm{~mm}^{2}$
:---	:---	:---					
Protection class	$\mathrm{IP54}$	$\mathrm{IP54}$					
Working \& storage temperature	$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$					

Adjustment of the Working Level

The test position of the override selector 1 makes setting the preset level easier by removing the ON and OFF delay.

Select the sensitivity range which suits your application (selector 1) 5 to 100 lux (low light level) application examples; public lighting, shop windows, signals...

50 to 2000 lux (high light level) application examples;controls of shades

At the appropriate moment of the day, put the selector 1 in test position; turn the potentiometer 2 up to the switching point (the indicator 4 lights); put the selector back to position 'auto' the normal operating mode of the device.

Technical Specification

Electrical specification

- Voltage rating:
- Consumption:
- Output:
max breaking capacity: incandescent lamp: halogen lamp: fluorescent lamp: uncompensated: compensated in series ($10 \mu \mathrm{~F}$) // compensated ($15 \mu \mathrm{~F}$): duo:

230 V - + 10/-15\% 50Hz
1.5VA max

1 voltage free changeover contact,
AC1 16A 250V~
2000W 230V~
1000W 230V~
1000W 230V~
1000W 230V~
200W 230V~
1000W 230V~

Functional Characteristics

- 2 sensitivity range 5 to 100 lux, 50 to 2000 lux
- Weekly cycle*
- 8 pre defined programs*
- Program setting: 1 minute increments*
- Accuracy: +6 min. / annum
- Operating reserve:
- On and Off delay:
- Working temperature:
- Storage temperature:
- Protection class (cell):
- Insulation class (cell):
lithium battery total of 3 years supply failure* 15 to 60s $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (cell) $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ (modular device) IP54

Connection Capacity

- Modular device:
0.5 to $4 \mathrm{~mm}^{2}$
- Cell:
0.75 to $2.5 \mathrm{~mm}^{2}$ max. length between cell and modular device: mounting of the cell with 2 screws:
* items marked EE171 only.
hager

Safety Transformers

These transformers are designed to ensure personal safety, their primary winding are electrically separated from their secondary windings and they are intended to feed safety extra low voltage circuits $\mathrm{U} \leq 50 \mathrm{~V}$. A thermal overload, in the primary windings, ensures that if a short circuit or an overload occurs in the output it will not damage the device

Bell Transformers
Bell transformers are similar to safety transformers but the secondary voltages do not exceed 24 volts, they are also similarly protected against short circuits and overloads, by thermal protection in the primary winding.

Compliance with the Standards

The bell and safety transformers conform with EN 60742 (BS 3535).
Where transformers are to be used in a common enclosure with other
 devices heat dissipation inserts LZ060 should be used.

Technical Specification							
Reference	ST301	ST303	ST305	ST312	ST313	ST314	ST315
Nominal power	4VA	8VA	16VA	25VA	16VA	40VA	60VA
Designation	Bell	Bell	Bell	Safety	Safety	Safety	Safety
Primary voltage	230 volts						
U2	12 volts	8 volts	8 volts	12 volts	12 volts	12 volts	12 volts
	$\mathrm{ln}=0.33 \mathrm{~A}$	$\mathrm{ln}=1 \mathrm{~A}$	$\mathrm{ln}=2 \mathrm{~A}$	$\mathrm{ln}=2.08 \mathrm{~A}$	$\mathrm{ln}=1.33 \mathrm{~A}$	$\mathrm{ln}=3.33 \mathrm{~A}$	$\mathrm{ln}=5.25 \mathrm{~A}$
Secondary voltage							
U3	12 volts	12 volts	12 volts	24 volts	24 volts	24 volts	24 volts
	$\mathrm{ln}=0.5 \mathrm{~A}$	$\mathrm{ln}=0.67 \mathrm{~A}$	$\mathrm{ln}=1.33 \mathrm{~A}$	$\mathrm{ln}=1.04 \mathrm{~A}$	$\mathrm{ln}=0.67 \mathrm{~A}$	$\mathrm{ln}=1.67 \mathrm{~A}$	$\mathrm{ln}=2.63 \mathrm{~A}$
No load U2	12 volts	15 volts	12.4 volts	14 volts	15.5 volts	13.7 volts	13.6 volts
Secondary voltage							
U3	18 volts	21.8 Volts	18.5 Volts	29 Volts	29.7 V	26.5 Volts	27 Volts
Galvanic isolation	4 kV						
Max functional temperature	$35^{\circ} \mathrm{C}$						
Overload and S/C protection			Thermal cut out in the primary winding				

Number of products that can be operated simultaneously by a transformer

Transformer	Reference	ST301		ST303		ST305		ST312		ST313		ST314		ST315R	
		8 V	12 V	8 V	12 V	8 V	12 V	12 V	24 V	12 V	24 V	12 V	24V	12 V	24 V
Power		4	4	8	8	16	16	25	25	16	16	40	40	63	63
Bell	SU212 8/12V	1	1	3	2	5	3	-	-	-	-	-	-	-	-
Buzzer	SU214 8/12V	1	1	3	2	5	3	-	-	-	-	-	-	-	-
Relays	ER124 12V	-	-	-	-	-	-	4	-	2	-	7	-	8	-
	ER139 12V	-	-	-	-	-	-	2	-	1	-	3	-	4	-
	ER123 24V	-	-	-	-	-	-	-	2	-	2	-	7	-	8
	ER138 24V	-	-	-	-	-	-	-	2	-	1	-	3	-	4
Contactors	ES224 24V	-	-	-	-	-	-	-	5	-	3	-	11	-	12
	ES424 24V	-	-	-	-	-	-	-	3	-	2	-	7	-	8
Latching relays	EPN519 12V	-	-	-	-	-	2	3	-	2	-	4	-	4	-
	EPN529 12V	-	-	-	-	-	1	2	-	,	-	3	-	3	-
	EPN513 24V	-	-	-	-	-	-	-	2	-	2	-	3	-	3
	EPN518 24V	-	-	-	-	-	-	-	2	-	2	-	3	-	3
	EPN525 24V	-	-	-	-	-	-	-	2	-	2	-	3	-	3
	EPN528 24V	-	-	-	-	-	-	-	2	-	1	-	3	-	3
	EPN541 24V	-	-	-	-	-	-	-	2	-	1	-	3	-	3

EK186 Multi-Range Thermostat

Technical Specifications

Electrical characteristics

- Voltage supply: $230 \mathrm{~V}+10-15 \% 50 / 60 \mathrm{~Hz}$
- Consumption: 1.5VA
- Output: 1 changeover contact
2A 230V ~ AC1

Functional Characteristics

- 4 temperature ranges
- 30 to $0^{\circ} \mathrm{C}$

0 to $+30^{\circ} \mathrm{C}$
+30 to $+60^{\circ} \mathrm{C}$
+60 to $+90^{\circ} \mathrm{C}$

- Varying accuracy

Environment

- Working temperature: -10 to $+50^{\circ} \mathrm{C}$
- Storage temperature: -20 to $+70^{\circ} \mathrm{C}$

Connection Capacity

- Flexible: 1 to $6 \mathrm{~mm}^{2}$
- Rigid: 1.5 to $10 \mathrm{~mm}^{2}$
- Probe: Maximum distance 50 m

Main Characteristics

- Multiple applications

A single device to solve all your problems of regulation or temperature control, from cold room to incubator.

- Varying accuracy

The accuracy can be adapted according to the application. e.g.: low for ambient temperature regulation, high for incubator regulation.

- Safety feature for probe failure

To protect the installation in case of disconnection from the probe. various connections can be made so the thermostat will be:

- Permanent OFF
- Permanent ON
- Cyclical operation: output ON 1 minute in every 4.
- Display

State of output

Product Presentation

(1) Selection of the range
(2) Adjustment of the temperature setting
(3) Selection of temperature range
(4) Display of state of output

Working Principle

the EK186 regulates the temperature according to all or nothing principle, it can be associated with different probes, according to the application the accuracy is a function of the temperature range and is selected by a slide switch.

Position on slide switch	The temperature range $^{\circ} \mathrm{C}$			
$\mathbf{- 3 0}$ to $\mathbf{0}$	$\mathbf{0}$ to $\mathbf{3 0}$	$\mathbf{3 0}$ to $\mathbf{6 0}$	$\mathbf{6 0}$ to $\mathbf{9 0}$	
$\mathbf{1}$	± 2.15	± 2.54	± 2.98	± 3.43
$\mathbf{2}$	± 0.15	± 0.18	± 0.21	± 0.24
$\mathbf{3}$	± 0.38	± 0.45	± 0.53	± 0.61
$\mathbf{4}$	± 1.23	± 1.45	± 1.70	± 1.96

Bold - Preferential accuracies for each temperature range.

Example of choice of accuracy

- Regulation of ambient temperature

$$
\begin{array}{ll}
\text { Range } & : 0 \text { to }+30^{\circ} \mathrm{C} \\
\text { Accuracy } & : \pm 0.18^{\circ} \mathrm{C}=2
\end{array}
$$

- Control of hot water outgoing circuit

$$
\begin{array}{ll}
\text { Range } & : 30 \text { to }+60^{\circ} \mathrm{C} \\
\text { Accuracy } & : \pm 0.53^{\circ} \mathrm{C}=3
\end{array}
$$

Electrical Connection

Caution

When the temperature ranges 30 to $60^{\circ} \mathrm{C}$ and 60 to $90^{\circ} \mathrm{C}$ are selected and the temperature measured by the probe is below $30^{\circ} \mathrm{C}$, the safety feature for probe failure must be "permanent on", until the measured temperature reaches the minimum temperature corresponding to the range (i.e. $30^{\circ} \mathrm{C}$ for the range $30^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ for the range $60^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$).

EK187 Multi Setting Thermostat

Electrical characteristics

- Voltage supply : $230 \mathrm{~V}+10-15 \% 50 / 60 \mathrm{~Hz}$
- Consumption : 1.5VA
- Output: 1 changeover contact
2A 230V;AC1

Functional Characteristics

- 3 temperature controllable by external setting
- Comfort: adjustable from +5 to $+30^{\circ} \mathrm{C}$
- Reduced: decrease 2 to $8^{\circ} \mathrm{C}$ in comparison with comfort setting
- Dispensation: adjustable from +5 to $+30^{\circ} \mathrm{C}$
- Accuracy: $\pm 0.2^{\circ} \mathrm{C}$

Environment

- Working temperature: -10 to $+50^{\circ} \mathrm{C}$
- Storage temperature: -20 to $+70^{\circ} \mathrm{C}$

Connection Capacity

- Flexible: 1 to $6 \mathrm{~mm}^{2}$
- Rigid: 1.5 to $10 \mathrm{~mm}^{2}$
- Probe: maximum distance 50 m

Product Presentation

(1) Reference setting: comfort TO
(2) Decrease in comparison with reference setting: reduced to TO
(3) Dispensation setting
(4) Dispensation setting override
(5) Display of state of output i.e. contact position
(6) Pilot light indicating the regulation in comparison with a dispensation setting
(7) Pilot light indicating the regulation in comparison with a reduced setting

Electrical Connection

Main Characteristics

- Temperature settings controllable by external setting when associating a digital time switch, it is possible to regulate the heating in relation with a program established by the user.
- 2 wires link between the probe and the unit, enables the easy replacement of the ambient thermostats of an existing installation.
- Safety feature for "probe failure" in case of probe disconnection, the output will be switched 1 minute in every 4; so that in case of disconnection during winter, it will protect the installation from frost.
- Display of state of the output and of the setting.

Working Principle

EK187 adjusts the temperature under the "all or nothing" principle it is associated to an ambient probe and thus works in closed loop the temperature settings are selected by external settings (contacts free of potential)

EK187 is thus generally associated to a time switch or a digital time switch in the case of absence of external signal, EK187 regulates the heating in comparison with the reference setting, a switch enables the override of the dispensation setting

Technical Specifications

Electrical characteristics

- Voltage supply: $230 \mathrm{~V}+10-15 \% 50 \mathrm{~Hz}$
- Consumption: 4VA
- Output: 1 changeover contact
2A 240V ~AC1

Functional Characteristics

- Adjustment of temperature setting "comfort and reduced temp." From +8 to $+28^{\circ} \mathrm{C}$
Fixed anti-frost temperature setting: $+8^{\circ} \mathrm{C}$
- Fixed accuracy: $\pm 0.2^{\circ} \mathrm{C}$
- Weekly cycle
- Programming capacity: 24 program steps
- Program setting: 1 minute increments
- Accuracy: ± 5 min./annum
- Supply failure reserve: 24 h

Loss of time setting only, program still in memory

Environment

- Working temperature: -5 to $+45^{\circ} \mathrm{C}$
- Storage temperature: -20 to $+60^{\circ} \mathrm{C}$

Connection Capacity

- Flexible: 1 to $6 \mathrm{~mm}^{2}$
- Rigid: 1.5 to $10 \mathrm{~mm}^{2}$
- Probe: Maximum distance 50 m

Main Characteristics

- Simplified summer/winter time setting

Summer/winter time setting is obtained by pressing two separate keys

- No loss of program in event of unlimited power failure Loss of time setting only, program still in memory
- Override
- Permanent: "comfort, reduced, anti-frost" temperature setting: - With automatic return to: "comfort and reduced" temperature setting:
- 2 wires link

Between the probe and the unit, this enables the easy replacement of the ambient thermostats in an existing installation

- Display Mode Allows program to be checked without risk of alteration
- Groups of days

Days can be grouped in order to save program steps (so, a common setting for several days counts only as 1 program step)

Working Principle

The programmable thermostat regulates the heating thanks to 2 temperature settings: "comfort" and "reduced", according to a program established by the user; in cases of long absence, it is possible to maintain an anti-frost temperature

Product Presentation

(1) programming of automatic cycle "comfort temperature", "reduced temperature", the principle of programming is similar to EG100.
(2) LCD screen
(3) Facility for permanent override of "comfort temperature", "reduced temperature", or "anti-frost"
(4) Adjustment of the reduced temperature setting
(5) Display of setting (comfort or reduced)
(6) Display of state of output
(7) Adjustment of the comfort temperature setting

Electrical Connection

EK083 Universal Probe

- To associate with EK186 thermostat
- To associate with EK187 thermostat and EK618 time programmable thermostat (for those applications insert in series with the probe a resistance of 1500Ω)

EK083: 10 kOhms at $25^{\circ} \mathrm{C}$
cable length: 4 m

Environment

- Working temperature: -30 to $+90^{\circ} \mathrm{C}$
- Stocking temperature: -30 to $+100^{\circ} \mathrm{C}$

Electrical connection

- Associated with EK186

- Associated with EK187-EK618

Examples of Applications

Use with the clamp collar

- For the control of hot water

Use with the clamp collar

- Protected by a sheath for the control of floor temperature

- Used as an external probe in a weatherproof box.

Resistance of probes according to temperature

Temperature	EK083	EK081*	EK081** EK082
$\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$	$\mathbf{R}(\mathbf{K} \Omega)$	$\mathbf{R}(\mathbf{K} \Omega)$	$\mathbf{R}(\mathbf{K} \Omega)$
+90	0.91	On a wall	-
+80	1.25	1.25	2.83
+70	1.75	1.75	3.33
+50	3.60	3.60	5.18
+30	8.06	8.06	9.64
+25	10	10	11.58
+20	12.49	12.49	14.07
+15	15.71	15.71	17.28
+10	19.90	19.90	21.48
+5	25.39	25.39	26.98
+0	32.65	32.65	34.23
-5	42.31	-	-
-10	55.29	-	-
-15	72.89	-	-
-20	96.97	-	-
-25	130.24	-	-
-30	176.68	-	-

Face value at $25^{\circ} \mathrm{C}$
Note: * Association with EK186
** Association with EK187 and EK618

Digital Voltmeters, Ammeters
 \& Hours Counter

Technical Specification

- Working voltage : $230 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$ - resolution : 1 unit
- Update of the display: 3 / seconds
- Input impedance > 1 MV for the voltmeter SM501
- Isolating resistance : 10 MV
- Maximum voltage: 660 V - number of digits : 3

Connection

- Flexible: $6 \mathrm{~mm}^{2}$
- Rigid: $10 \mathrm{~mm}^{2}$

Environment

- Working temperature: -10 to $+55^{\circ} \mathrm{C}$
- Storage temperature : -40 to $+70^{\circ} \mathrm{C}$

| Cat Ref. | Product | Range | Consump. | Accuracy
 $\%$ | Ref. Temp
 ${ }^{\circ} \mathrm{C}$ | Accuracy
 Variation ${ }^{\circ} \mathrm{C}$ | Maximum
 continuous | Momentary
 maximum | Frequency
 Hz | Isolating
 voltage |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SM501 | Voltmeter | 500 V | $\leq 4.5 \mathrm{VA}$ | ± 1 | $23 \pm 1^{\circ} \mathrm{C}$ | $\pm 0.03 \% /{ }^{\circ} \mathrm{C}$ | 1.2 Un | $2 \mathrm{Un} / 5 \mathrm{sec}$. | $45-65$ | $2 \mathrm{kV} / 50 \mathrm{~Hz}-1 \mathrm{~min}$ |
| SM151 | Ammeter | $0-150 \mathrm{~A}$ | $\leq 1 \mathrm{VA}$ | ± 1 | $23 \pm 1^{\circ} \mathrm{C}$ | $\pm 0.03 \% /{ }^{\circ} \mathrm{C}$ | 2 ln | $10 \mathrm{ln} / 5 \mathrm{sec}$. | $45-65$ | $2 \mathrm{kV} / 50 \mathrm{~Hz}-1 \mathrm{~min}$ |
| SM401 | with CT | $0-400 \mathrm{~A}$ | | | | | | | | |

Electrical Connection

Electrical Connection

Hours Counter

Technical Specifications

Electrical Characteristics

- Working voltage: 230V

Electrical Connection

- Connection in parallel on the command of the receiver (contactor coil)

Electrical Connection

Analogue Voltmeter, Ammeter \& Current Transformers

Technical specification

Environment

- T° working: -25 to $+50^{\circ} \mathrm{C}$
- T° storage: -40 to $+80^{\circ} \mathrm{C}$

Connection

- Flexible: 1 to $6 \mathrm{~mm}^{2}$
- Rigid: 1.5 to $10 \mathrm{~mm}^{2}$

Cat Ref.	Product	Range	Consump.	Accuracy \%	Ref. Temp ${ }^{\circ} \mathrm{C}$	Accuracy Variation ${ }^{\circ} \mathrm{C}$	Maximum permanent overload	Momentary overload	Frequency Hz	Isolating voltage
SM500	Voltmeter	500 V	$\leq 3 \mathrm{VA}$	1.5	$23 \pm 2^{\circ} \mathrm{C}$	$\pm 0.03 \% /{ }^{\circ} \mathrm{C}$	1.2Un	2Un / 5 sec.	45-65	$2 \mathrm{kV} / 50 \mathrm{H}$ z-1min
SM050	Ammeter	0-50A	$\leq 1.1 \mathrm{VA}$	1.5	$23 \pm 2^{\circ} \mathrm{C}$	$\pm 0.03 \% /{ }^{\circ} \mathrm{C}$	1.2Un	10Un / 5 sec .	45-65	$2 \mathrm{kV} / 50 \mathrm{H}$ z-1min
SM100	with CT	0-100A								
SM150		0-150A								
SM250		0-250A								
SM400		0-400A								

Electrical Connection

Current Transformers (CT)

Technical Specification

- Secondary current: 0-5 A
- Frequency: $50 / 60 \mathrm{~Hz}$
- Maximum permanent overload: 1,2 In
- Working T° : -25 to $+50^{\circ} \mathrm{C}$
- Storage T^{o} : -40 to $+80^{\circ} \mathrm{C}$

Accuracy Class / VA Cat Ref.				
Rating	Accuracy \% $\mathbf{0 . 5}$	$\mathbf{1}$	$\mathbf{3}$	
SR051	50 A	-	1.25	1.5
SR101	100 A	2	2.5	3.5
SR150	150 A	-	-	1.5
SR200	200 A	-	2	3
SR250	250 A	-	2	3
SR300	300 A	4	8	12
SR400	400 A	8	12	15
SR600	600 A	12	15	15

Range of CT's

SR051, SR101, for cable $\varnothing 21$
Max busbar $20 \times 5 \mathrm{~mm}$

SR 150, SR 200, SR 250, for cable B 23 max busbar 30×10 max

SR 300, SR 400, SR600, for cable B 35 max maximum busbar 40×10 max

Technical Specifications EC120 / EC121
Product Presentation

(1) Tot. / part. to select display of total or partial consumption.
(2) $\mathrm{t} 1 / \mathrm{t} 2$ to select display of tariff 1 or 2 (EC121 only)
(3) Res to reset the partial counter.
(4) LED flashing every 10 Wh .
(5) 7 digit display.
(6) Indication of operating mode.

Electrical Connection

Technical Specifications EC320 / EC321

Product Presentation

(1) tot. / part. to select display of total or partial consumption.
(2) $\mathrm{t} 1 / \mathrm{t} 2$ to select display of tariff 1 or 2 (EC321 only).
(3) Res to reset the partial counter.
(4) LED flashing every 10 Wh .
(5) 7 digit display.
(6) Indication of operating mode.
(7) Prog to set the counter (to select the ratio of the CT and the type of network.

Electrical connection: - ec320 / EC321

According to the type of network, different connections are possible:

- 4 wires (3 phase + neutral) with 3 CT or 1 CT
- 3 wires (3 phases) with 3CT or 1 CT
- 2 wires (2 phases) with 2 CT

Current Transformers (C.T.)To set the C.T. ratio

1. Press key Δ for 3 seconds, the counter will display the ratio in memory (CT primary current. 100A pre-registered).
2. Press successively key i to scroll the different ratios. The display will flash.
3. To register the ratio press key Δ. The display will stop flashing.
4. To switch back to the consumption display, press key Δ for 3 seconds.
5. Available CT ratios are 50 / 100 / 150 / 200 / $250 / 300 / 400 / 600$ / $800 / 1000 / 1250 / 1500: 5$

[^0]Tebis TX

- Building Automation

Established for over 15years, Tebis provides an alternative and simplistic approach to control.

Tebis utilises a bus-based approach to control, offering benefits such as increased Flexibility, Functionality, Future proofing and Safety.

Tebis differs from a conventional installation in that there are two distinct circuits; one for power and one for control. With a conventional installation power and switching are combined, which can often be complex when multi-way switching is required.

Wiring simplicity is achieved with Tebis, as the only devices cabled on the LV (240 V ac) side are the loads. All controls for these loads are connected to the bus circuit, which is rated at 30 V DC.

Flexibility
The function of any switch can be changed at any time, without the need to touch the wiring.

Functionality
A single load can be controlled from several positions. Conversely several loads can be controlled from one position.

Future proofing
Tebis can work with any brand of pushbuttons giving you the choice both now and in the future. Adding extra control points is simply achieved by extending the control bus.

Safety
The control bus voltage is 30 V DC thus increasing the safety of the installation and reducing the risk of electrocution.

[^0]: Saving of measurment are made regularly in case of power failure

