

Catálogo de Produtos

Pressure shut-off valve pilot operated, type DA/DAW...50B/(New Series)

BEIJING HUADE HYDRAULIC INDUSTRIAL GROUP CO.,LTD.

Pressure shut-off valve pilot operated, type DA/DAW...50B/(New Series)

RE 26420/12.2004

Size 10, 20, 30 up to 31.5 MPa up to 240 L/min

RE26420/05.2001

Features:

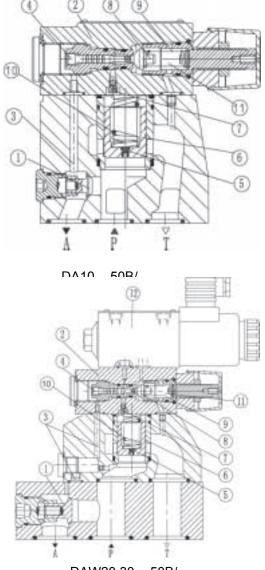
- For subplate mounting:
- 4 adjustment elements:
 - Rotary knob
 - · Sleeve with internal hexagon and protective cap
 - · Lockable rotary knob with scale
 - · Rotary knob with scale
- 4 pressure ratings, optional
- Solenoid actuated unloading via a built-on directional valve

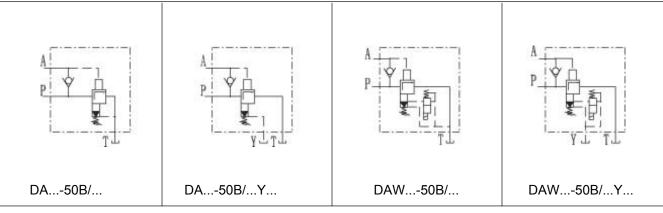
Function, section

Pressure control valves type DA/DAW are pilot operated pressure shut-off valves. They are used to switch a pump flow over to unpressurised by-pass as soon as the accumulator loading pressure is reached. Further applications for the valve are in systems that have high and low pressure pumps. In this case the low pressure pump is switched to unpressurised by-pass as soon as the set high pressure is reached.Pressure shut-off valves basically consist of the main valve with the main spool assembly , pilot valve with pressure adjustment element and check valve . In size 10 valves, the check valve is built into the main valve . In valve sizes 25 and 32 the check valve is built into a separate plate installed under the main valve.

Pressure shut-off valve type DA

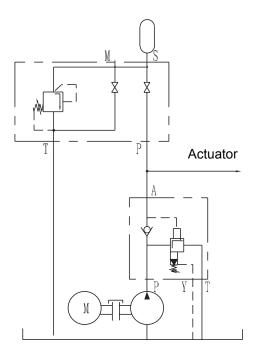
Diverting pump flow from P to A or P to T.


The pump delivers flow via check valve (1) into the hydraulic system (P to A). Pressure in port A acts via pilot line (3) on the pilot control spool (4). At the same time, pressure in port P passes via orifices (5) and (7) to the spring loaded side of the main spool (6) ball poppet (8) in the pilot valve (2). As soon as the set cut-off pressure in the hydraulic system is reached, the poppet (8) lifts off against spring (9). Pressure fluid now flows via orifices (5) and (7) into spring chamber (11).From here, the fluid is returned to tank either internally via control line in valve type DA..50B/... or externally via control line in valve type DA..50B/... or externally via control line in valve type DA..50B/... The check valve (1) now closes the connection from A to P. The ball(8) is now held open by the system pressure via pilot spool (4).


Diverting pump flow from P to T or P to A.

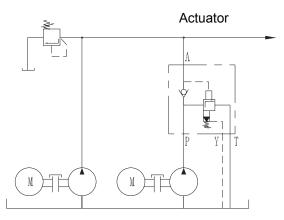
The area of the pilot spool (4) is 10% or optionnally 17% greater than effective area of the ball(8). The effective force on the pilot spool (4) is, therefore,10 or 17% greater than the effective force on the ball(8) .When the actuator pressure falls in relation to the cut-off pressure by a valve which corresponds to the switching pressue differential,spring (9) pushes ball(8) on to its seat.Pressure is then built up on the spring loaded side of the main spool(6).In conjunction with spring (10), this closes the main spool(6) and isolates the connection from P to T . the pump flow passes once more via the check valve (1) into the hydraulic system(P to A).

Pressure shut-off valve type DAW


The function of this valve is basically the same as the DA valve. A solenoid actuated directional valve(12) can, however switch the set cut-off pressure which is under the pilot valve (2) either from P to T or form P to A.

Circuit examples

Hydraulic system with accumulator



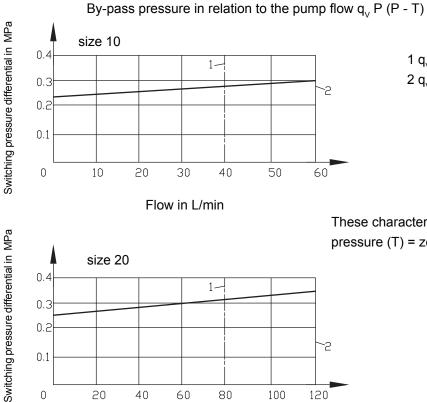
Application guidelines:

The connection between the DA valve and the hydraulic accumulator should be as short as possible and with a low pressure drop!

With high pump flows as well as small switching differentials 10%) then preferably the "Y" version should be used.

Hydraulic system with high and low pressure pumps

DA				50 I	B ∕ 									*			
Without directional valve = No code With built-on directional spool valve = W														Furthe	er details	s in clear	text
Pilot operated valve (complete) = No coc Pilot operated valve without ma	de												No o V =	code. =	pho	mineral sphate es	
spool assembly (do not enter no size) = Pilot operated valve with ma spool assembly (enter valve si	m. Cain											No (2 =	code. =	=		Me Brit	
Nominal size 10 Nominal size 25 Nominal size 32	= 10 = 20 = 30										Z4 = Z5 = Z5L	=	arge p		e plug-i	in connect in connect or with 1	cto
or √ ∭ Who Normally closed] d =	= A								No N :	code =	: =				nd overric	
$\alpha = \frac{AB}{PT} W_b$ Normally open	=	= B						-	G2	220-{ 24 = 220F						V 50Hz A 24 V [OC solence	C
Adjustment elements Rotary knob		= '	1						V V 2	2201		built-ir	n rectif	fier(only		"Z5" plu	
Sleeve with hexagon and prot Lockable rotary knob with sca		o = 2 = 3	-					No (6B	code =	=						ctional v	
Series 50 to 59 (50 to 59: unchanged installation and c	onnection	dimer	=50 nsions)			_											
Technology of Beijing Huade H	ydraulic		=	 B			No c Y		=							turn inter urn exter	
						Switc	hing	pre	ssur	e dif	ferent	tial (P	→ A)				
Settable pressure range						10 =								Ir	n the mi	id range	10
0 to 5 MPa				=	50	17 =								Ir	n the mi	id range	17
5 to 10 MPa				= 1	00	L											
10 to 20 MPa				= 2	200												
				_													


= 315

20 to 31.5 MPa

Hydraulic technical data

Size		10	20	30					
Max. flow L/min	10%	40	80	120					
	17%	60	120	240					
Pressure range	10%	See chracteristic curse							
Ū.	17%								
Operating pressure,p	ort A (MPa)	up to 31.5							
Max.settable pressur	e (MPa)	up to 5,up to 10,up to 20,up to 31.5							
Pressure fluid		Mineral oil (for NBR seal),or phosphate ester (for FPM seal)							
Viscosity range	(mm²/s)	10~800							
Pressure fluid temperature	e range (°C)	-30 to + 80							
	DA	2.6	6.6	12.3					
	DAW	3.8	7.8	13.5					
Weight (Kg)	DAC	1.2(DAWC add to 1.2Kg)							
	DAC30	1.5(D	1.5(DAWC30 add to 1.2Kg)						
Direction valve chara	cteristic	see WE6							

Characteristic curves (measured at v = 41 mm² /s and t = 50 $^\circ\text{C}$)

1 $q_{v max}$ for 10% version $2 q_{v max}$ for 17% version

These characteristic curves are valid for an outlet pressure (T) = zero over the entire flow range.

0

20

40

60

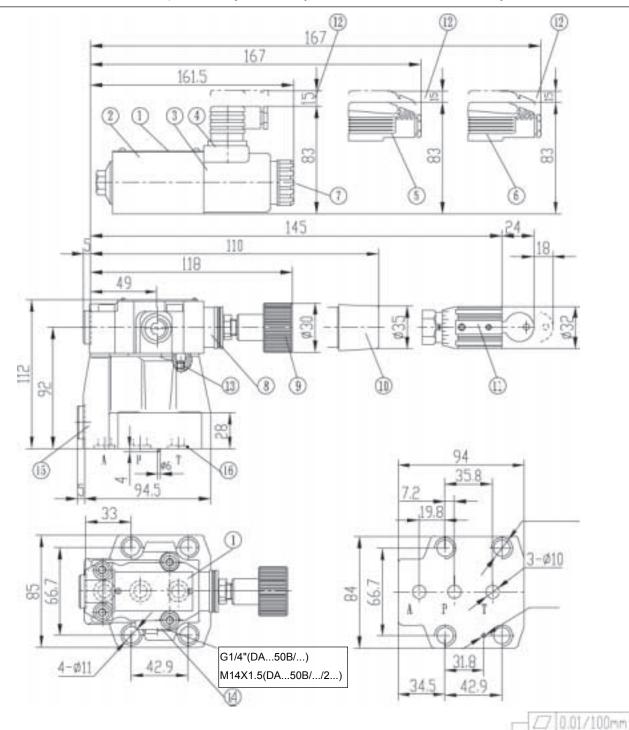
Flow in L/min

80

100

120

1 $q_{v max}$ for 10% version size 30 Switching pressure differential in MPa 2 q $_{\rm v\ max}$ for 17% version 0.6 1 These characteristic curves are 0.5 valid for an outlet 0.4 pressure (T) = zero over the 0.3 entire flow range. 0.2 0 40 80 120 160 200 240 Flow in L/min Switching pressure differential in relation 16MPa pressure range to the cut-off pressure $(P \rightarrow A)$ 25 25 Switching pressure 20 20 differential in % differential in % 15 15 10 10 5 5 0 0 3.5 4.5 5 6 7.5 10 3 4 cut-off pressure in Mpa cut-off pressure in Mpa 30 30 Switching pressure differential in % differential in % 25 25 20 20 15 15 10 10 0 0 20 22.5 27.5 31.5 10 12.5 15 17.5 20 25 30 cut-off pressure in Mpa cut-off pressure in Mpa


By-pass pressure in relation to the pump flow $q_v P (P \rightarrow T)$

=Deviation range for the 17% version =Deviation range for the 10% version

Switching pressure

Switching pressure

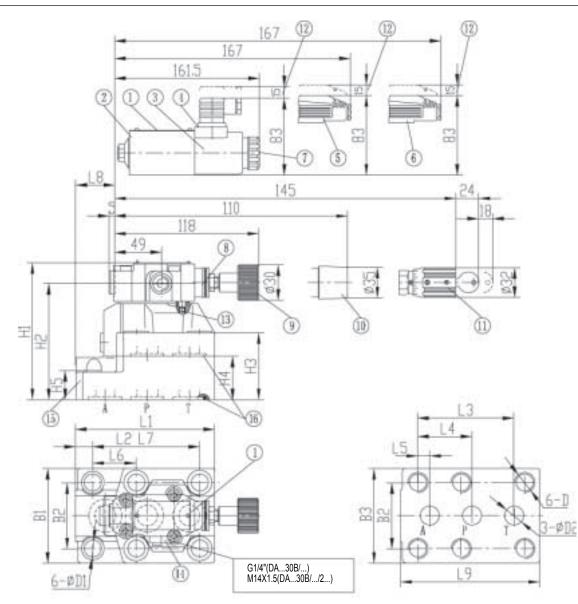
DA/DAW Unit dimensions, size 10 (50 series):

1.Nameplate

- 2.Directional valves, type WE6
- 3.Solenoid
- 4.Plug-in connector Z4
- 5.Large plug-in connector Z5
- 6.Large plug-in connector with light Z5L
- 7.Hand override, optional
- 8.Lock nut(only apply to up to 31.5 Mpa)

- 9.Adjustment element 1
- 10.Adjustment element 2
- 11.Adjustment element 3
- 12.Space required to remove key
- 13.Locating pin

14.Port Y for external pilot oil drain


- 15.Integrated check valve
- 16.O-ring 17.12X2.62

Required surface finish of mating piece

118,

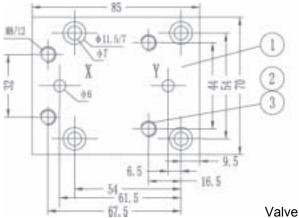
Fixing screw : 4-M10X50-10.9 (GB/T70.1-2000) Subplates : see page151 G467/1 (G3/8") G468/1 (G1/2")

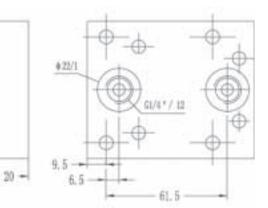
DA/DAW Unit dimensions, size 20,30 (50 series):

- 1. Nameplate
- 2. Directional valves, type WE6
- 3. Solenoid
- 4.Plug-in connector Z4
- 5.Large plug-in connector Z5
- 6.Large plug-in connector with light Z5L
- 7. Hand override, optional
- 8. Lock nut
- 9. Adjustment element 1
- 10. Adjustment element 2

- 11. Adjustment element 3
- 12. Space required to remove key
- 13. Locating pin
- 14. Port Y for external pilot oil drain
- 15. Integrated check valve
- 16. O-ring 27.3X2.4
- DA/DAW20...50B/...:28.17X3.53
- DA/DAW30...50B/...:34.52X3.53
- 17. Space required to remove key

Required surface finish of mating piece

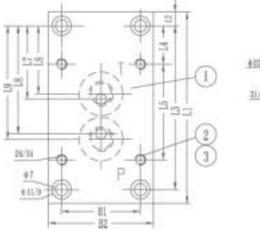

						-					-	
Size	L1	L2	L3	L4	L5	L6	L7	L8	L9	B1	B2	
20	154	25	101.6	57.1	12.7	46	112.7	48.2	156	101	69.9	
30	199	42	127	63.5	12.7	50.8	139.7	69.8	229	118.5	82.5	
Size	B3	H1	H2	H3	H4	H5	ΦD1	ΦD2		D		
20	103	144	124	72	46	28	18	25	M16 depth 34			
30	118.5	165	145	93	67	45	20	32	M18 depth 37			

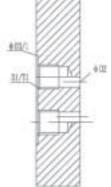

	DA/DAW20	DA/DAW30
Fixing screw	4-M16X100-10.9 2-M16X60-10.9 (GB/T70.1-2000)	4-M18X120-10.9 2-M18X80-10.9 (GB/T70.1-2000)
Subplate for see page 151	G469/1 (G3/4) G470/1 (G1")	G471/1 (G11/4") G472/1 (G11/2")

G51/01 (G1/4 ") G51/02 (M14 \times 1.5) Weight: 1kg

(Dimensions in mm)

(Dimensions in mm)

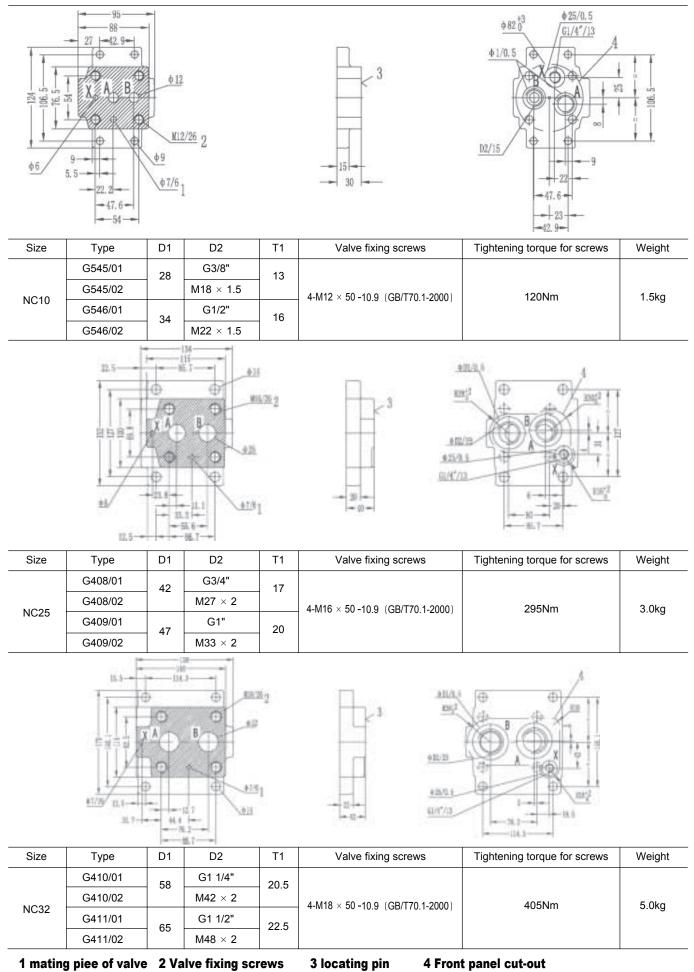

Valve fixing screws, $4-M18 \times 40 - 10.9$ (GB/T70.1-2000)



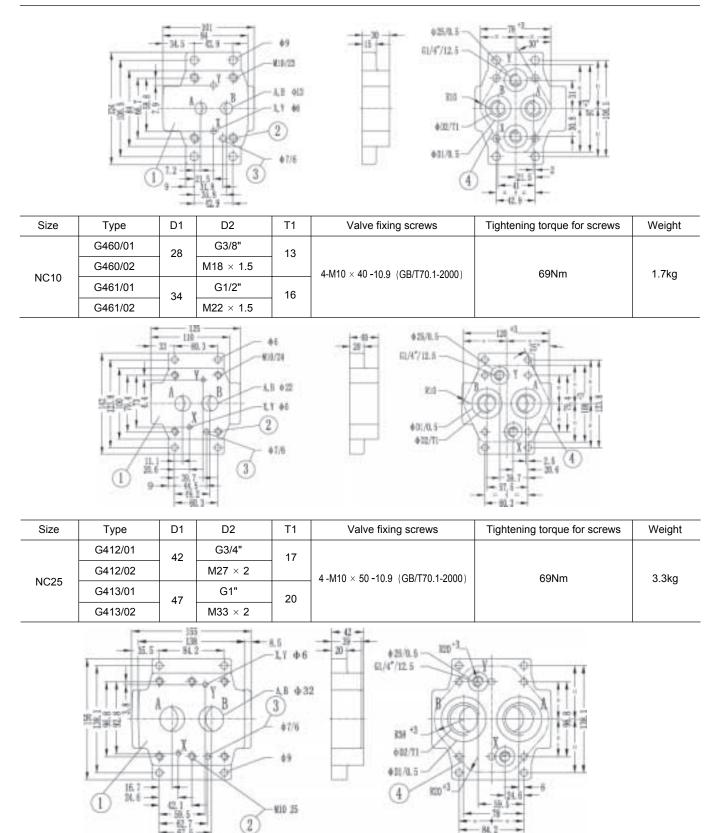
110 - 22.5 40 12.9 F-H 11/4 * / 15 1402/25 #25/0.3 414 × 134*/17 3 10/11 47.6 27 54 솭

Valve fixing screws, 4-M18 \times 40 -10.9 (GB/T70.1-2000)

 $\begin{array}{l} G300/01(G1/4") \ G302/01(G1/2") \ G304/01(G1") \ G306/01(G1 1/2") \\ G300/02(M14 \times 1.5) \ G302/02(M22 \times 1.5) \ G304/02(M33 \times 2) \ G306/02(M48 \times 2) \\ \end{array} \right)$

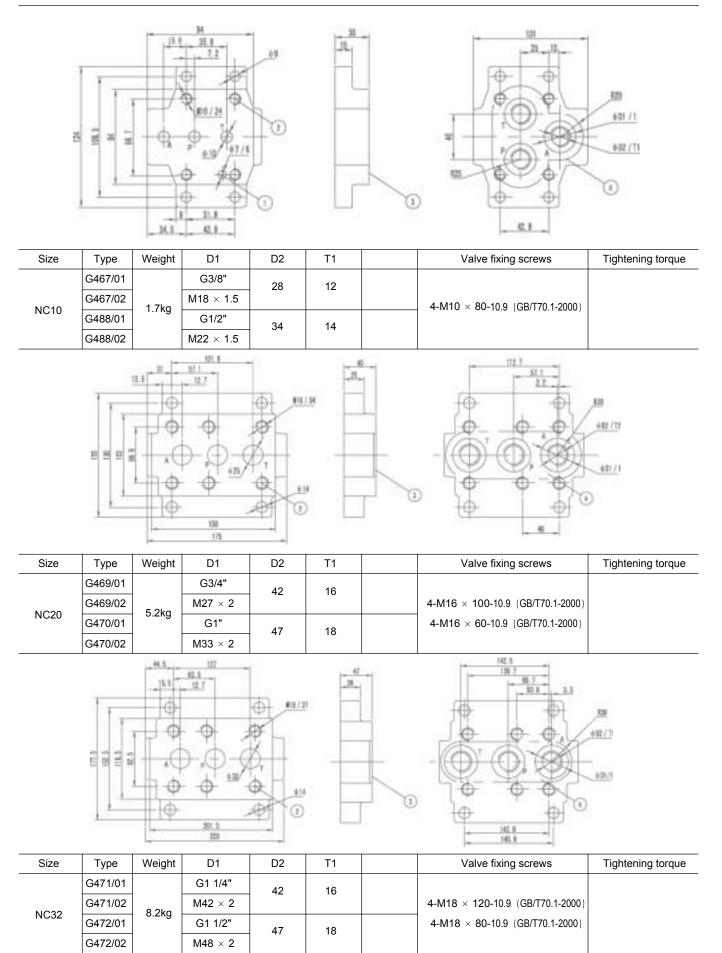


Valve fixing screws		Weight
NG6:M6 × 50	GB70	1.5
NG10:M8 × 70	-85	2.5
NG20:M8 × 90	-10.9	2.5
NG30:M10 × 110		5

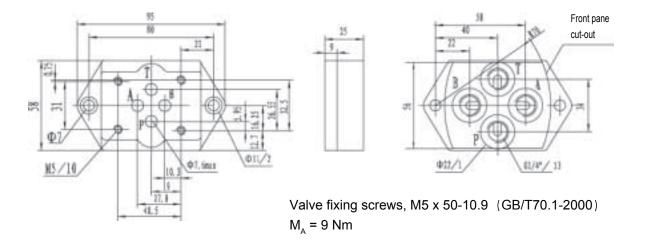

mating piee of valve
Valve fixing pin
Valve fixing screws

Size	L1	L2	L3	L4	L5	L6	L7	L8	L9	B1	B2	φ D2	ϕ D3	D4	T1	S	D1
6	110	8	94	22	55	39	42	62	65	45	60	6	25	M6	15	25	1/4″(M14 × 1.5)
10	135	10	115	27.5	70	40.5	48.5	72.5	80.5	60	80	10	34	M8	16	25	1/2″(M22 × 1.5)
20	170	15	140	20	100	42	55	86	97	70	100	20	47	M8	20	40	1″(M33 × 2)
30	190	12.5	165	17.5	130	42	62.5	112.5	123	100	130	30	61	M10	24	40	11/2″(M48 × 2)

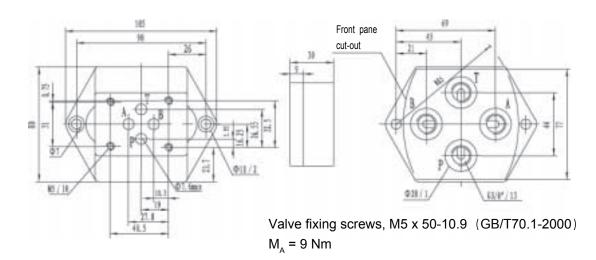
Subplates


Subplates

Size	Туре	D1	D2	T1	Valve fixing screws	Tightening torque for screws	Weight
	G414/01	56	G1 1/4"	20.5			
	G414/02		M42 × 2		6 -M10 × 60-10.9 (GB/T70.1-2000)	69Nm	5kg
NC32	NC32 G415/01	61	G1 1/2"	22.5	0 mild × 00 10.0 (0 <u>D</u> /170.1-2000)	ooran	l
	G415/02	01	M48 × 2				


1 mating piee of valve 2 Valve fixing screws

3 locating pin

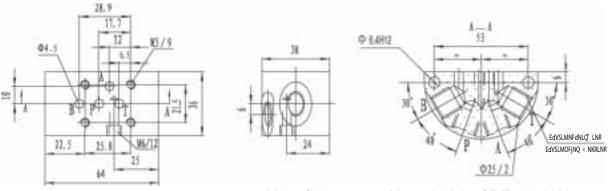

1. locating pin 2. Valve fixing screws 3. mating piee of valve 4. Front panel cut-out

G341/01 (G1/4") G341/02 (M14x1.5) Weight \approx 1kg

G342/01 (G3/8") G342/02 (M18x1.5) Weight \approx 1kg

(Dimensions in mm)

For applications outside these parameters, please consult us!


G115/01 (G1/4") G115/02 (M14x1.5)

(Dimensions in mm)

G96/01 (G1/4") G96/02 (M14x1.5)

(Dimensions in mm)

Valve fixing screws, M5 x 50-10.9 (GB/T70.1-2000) $M_A = 9 \text{ Nm}$