
Auslöse-Charakteristiken für Sicherungsautomaten im Vergleich

In DIN VDE 0100-430 sind die Anforderungen für den "Schutz von Kabeln und Leitungen bei Überstrom" festgelegt. Sicherungsautomaten dienen dem Kabel- und Leitungsschutz in der Installation. Sie sollen selbsttätig abschalten, sobald der Strom durch Anstieg und Zeitdauer eine für die Leitung oder ein Betriebsmittel zu hohe Erwärmung erzeugt.

Die Abschaltung erfolgt dabei über zwei unterschiedliche Auslöser. Zum Schutz bei Kurzschluss wird der zeitlich nahezu unverzögerte Elektromagnetauslöser eingesetzt. Dieser arbeitet nur stromabhängig. Der Thermo-Bimetall-Auslöser dient zum Schutz bei Überlast. Das Auslösen wird durch die Erwärmung, d.h. durch die Faktoren Strom und Zeit verursacht.

Bei der Auswahl von Sicherungsautomaten zum Überstromschutz nach DIN VDE 0100-430 wird der Durchlasswert I² x t bei sehr kurzen Ausschaltzeiten (<0,1s) dem maximal zulässigen Stromwärmeimpuls k² x S² der Leitung gegenübergestellt, um den ausreichenden **Schutz bei Kurzschluss** nachzuweisen.

Die einzelnen Auslösekennlinien von Elektromagnet-Auslöser und Thermo-Bimetall-Auslöser ergeben zusammen eine gemeinsame Auslösekennlinie für den Überlastschutz. Diese Auslösekennlinie stellt – bezogen auf die jeweilige Auslösecharakteristik – das Zeit-/Stromverhalten eines Sicherungsautomaten dar.

Dem Wunsch nach größtmöglichem Schutz, was höchste Empfindlichkeit der Sicherungsautomaten bedeutet, stehen die unterschiedlichen Betriebseigenschaften der zu schützenden Verbrauchsgeräte gegenüber. Zum Einen müssen Stromspitzen ungehindert passieren können, zum Anderen muss aber schon bei verhältnismäßig niedrigen, länger anstehenden Überströmen eine Abschaltung herbeigeführt werden. Deshalb sind je nach Art des zu schützenden Betriebsmittels verschiedene Auslösecharakteristiken für Sicherungsautomaten erhältlich:

- B, C und D für den Überstromschutz von Leitungen nach DIN EN 60898-1 (DIN VDE 0641-11)
- K zum Schutz von Wicklungen bei Motoren und Transformatoren bei gleichzeitigem Überstromschutz der Leitungen
- Z für Steuerstromkreise mit hohen Impedanzen, für Spannungswandlerkreise und für Halbleiterschutz bei gleichzeitigem Überstromschutz von Leitungen

Schutz bei Kurzschluss

Die Abbildung 1 zeigt die typische Durchlasskennlinie I^2t von Überstromschutzschaltern. Für den Sicherungsautomat S201-B16 ergibt sich daraus bei einem möglichen prospektiven Kurzschlussstrom von $I_{cc}=6$ kA, dass die Durchlassenergie auf ca. 20.000 A^2s begrenzt wird. Dieser Wert liegt weit unterhalb 29.700 A^2s . Damit können PVC-isolierte Cu-Leiter 1,5 mm² im Kurzschlusfall geschützt werden.

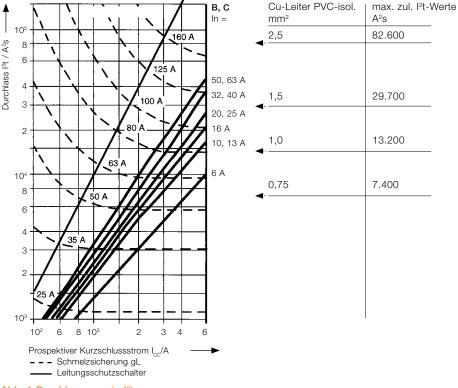


Abb. 1 Durchlassenergie I2t

Überlastschutz nach DIN VDE 0100-430

Für den Schutz bei Überlast ist das Schutzgerät in Abhängigkeit der Strombelastbarkeit I_z der Leitung zu wählen:

 $I_b \le I_n \le I_z$ (1

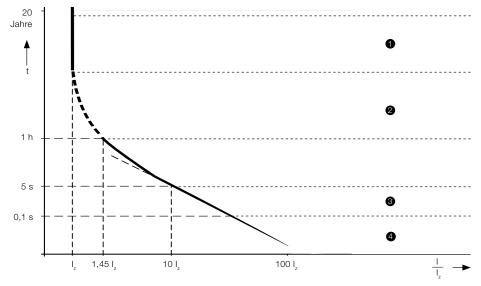
 $I_2 \le 1,45 \times I_2$ (2)

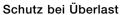
I_b = Betriebsstrom der Leitung

Bemessungsstrom der Schutzeinrichtung

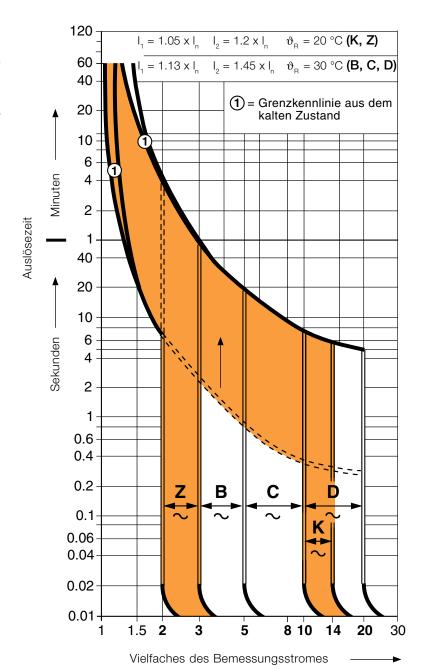
I_z = Strombelastbarkeit der Leitung nach DIN VDE 0298-4

I₂ = festgelegter Auslösestrom der Schutzeinrichtung




Abb. 2 Grenzbelastungskennlinie für PVC-isolierte Leitungen

- Bereich vollkommener Wärmeableitung bei Dauerstrom I
 Parit II
 Bereich vollkommener Wärmeableitung bei Dauerstrom I
 Dauerstrom
 - zul. Betriebstemperatur 70 °C
- Bereich begrenzter Wärmeableitung bei Überlast I₂ ≤ 1,45 x I₂
- ③ Bereich ohne Wärmeableitung bei maximaler Kurzschlussdauer 5s l²t = konstant, zul. Kurzschlusstemperatur 160 °C
- $\begin{tabular}{ll} \hline 4 Bei Ausschaltzeit < 0,1s muss I^2t des \\ Sicherungsautomaten kleiner als $k^2 \cdot S^2$ der \\ Leitung sein \\ \hline \end{tabular}$
 - (k = Materialwert nach DIN VDE 0100-430;
 - S = Leitungsquerschnitt in mm²)


DIN VDE 0100-430:2010/10; Abschnitt 433.1

Die Bedingungen (1) und (2) garantieren in einzelnen Fällen nicht den vollständigen Schutz, z. B. bei lang anstehenden Überströmen, die kleiner als I, sind. In solchen Fällen sollte ein größerer Querschnitt des Kabels/der Leitung gewählt werden.

Allgemeines Ziel ist, mit der ausgewählten Charakteristik ein Kabel/eine Leitung gemäß ihrer Grenzbelastbarkeit nach Abb. 2 zu schützen.

Es wird deutlich, dass mit den Auslöse-Charakteristiken "K" und "Z" mehr Sicherheit beim Planen und im Betrieb erreicht wird, da der festgelegte Auslösestrom bei 1,2 x I liegt (B, C, D: 1,45 x I_n).

Leitertemperaturen PVCisolierter Leitungen bei Überlast

Belastung	Leitertemperatur*
1,0 x l _n	70 °C
1,2 x l _n	86 °C
1,45 x l _n	116 ℃

90 % des Temperaturwertes werden aus dem betriebswarmen Zustand heraus nach 5 Minuten erreicht.

Lebensdauer von PVC-isolierten Leitungen nach Arrhenius

.eitertemperatur	Lebensdauer
70 °C	20,0 Jahre
90 °C	2,5 Jahre
100 °C	1.0 .lahr

Vergleich der Auslöse-Charakteristiken "Z" und "B"

Steuerstromkreise 24 V DC

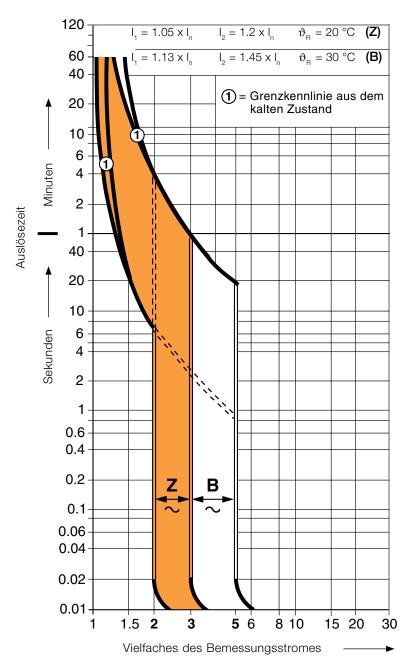
Damit im Sinne der Norm ein möglichst ausreichender Schutz empfindlicher Bauelemente (wie Kontakte, konfektionierte Leitungen von Sensoren/Endschaltern...) erreicht werden kann, muss der unverzögerte Auslöser im Millisekunden-Bereich die Abschaltung bewirken.

Es dürfen im Hinblick auf den Schleifenwiderstand max. Leitungslängen nicht überschritten werden. Unter Berücksichtigung verschiedener Parameter ergeben sich beispielhaft folgende maximale Leitungslängen:

1,5 mm², 2-adrig, Cu LS B6 max. 10 m

LS Z2 max. 47 m

LS Z6 max. 18 m


Bei Verwendung der Z-Charakteristik lassen sich aufgrund des niedrigen Sofortauslösestroms die größten Leitungslängen realisieren.

Hinweis

Bei Gleichstrom erhöhen sich die Auslösewerte der elektromagnetischen Auslöser um den Faktor 1,5.

Schutz bei Überlast

Hier wird deutlich, dass mit der Auslöse-Charakteristik "Z" mehr Sicherheit beim Planen und im Betrieb erreicht wird.

Leitertemperaturen PVCisolierter Leitungen bei Überlast

Belastung	Leitertemperatur*		
1,0 x l _n	70 °C		
1,2 x l _n	86 °C		
1,45 x l _n	116 ℃		

* 90 % des Temperaturwertes werden aus dem betriebswarmen Zustand heraus nach 5 Minuten erreicht.

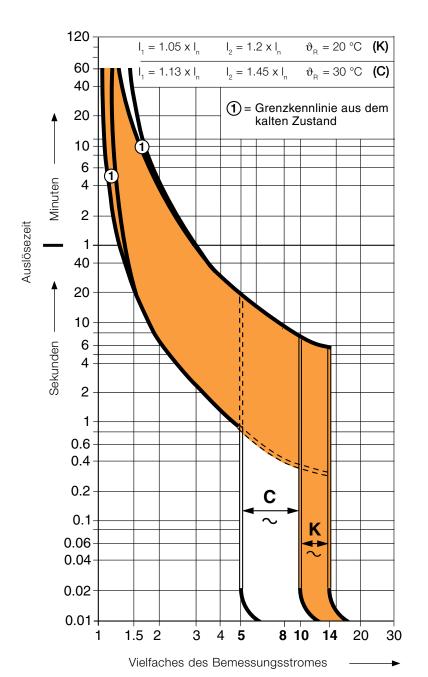
Lebensdauer von PVC-isolierten Leitungen nach Arrhenius

Leitertemperatur	Lebensdauer
70 °C	20,0 Jahre
90 °C	2,5 Jahre
100 °C	1.0 Jahr

Vergleich der Auslöse-Charakteristiken "C" und "K"

"K" löst den Zielkonflikt von Betriebssicherheit bei Stromspitzen und schneller Abschaltung im Kurzschlussfall.

In Stromkreisen, wo Einschaltstromspitzen durch Motoren, Ladegeräte, Schweißtransformatoren, usw. auftreten können, hat sich die Auslöse-Charakteristik "K" seit über 70 Jahren bewährt.


Stromspitzen bis 10 · I_n führen nicht zur ungewollten Abschaltung. Die Auslöse-Charakteristik "C" hält nur Stromspitzen bis $5 \cdot I_n$ stand.

Hinweis

Bei Gleichstrom erhöhen sich die Auslösewerte der elektromagnetischen Auslöser um den Faktor 1,5.

Hier wird deutlich, dass mit der Auslöse-Charakteristik "K" mehr Sicherheit beim Planen und im Betrieb erreicht wird.

Leitertemperaturen PVCisolierter Leitungen bei Überlast

Belastung	Leitertemperatur*
1,0 x I _n	70 °C
1,2 x l _n	86 °C
1,45 x I _n	116 ℃

90 % des Temperaturwertes werden aus dem betriebswarmen Zustand heraus nach 5 Minuten erreicht.

Lebensdauer von PVC-isolierten Leitungen nach Arrhenius

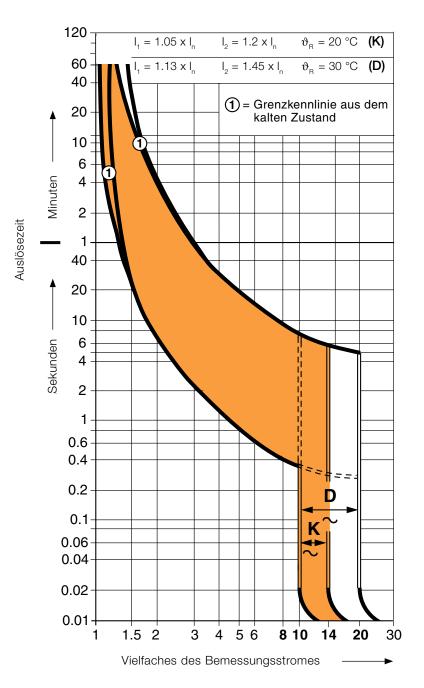
Leitertemperatur	Lebensdauer
70 °C	20,0 Jahre
90 °C	2,5 Jahre
100 °C	1.0 Jahr

Vergleich der Auslöse-Charakteristiken "K" und "D"

"K" löst den Zielkonflikt von Betriebssicherheit bei Stromspitzen und schneller Abschaltung im Kurzschlussfall.

Die Auslöse-Charakteristik "K" löst spätestens $14 \cdot I_n$ in <0,1 Sekunden aus. Dagegen schaltet die Auslöse-Charakteristik "D" erst bei $20 \cdot I_n$ in <0,1 Sekunden ab, was im Hinblick auf den Schleifenwiderstand sowie auch beim Leitungsschutz im Bereich $10-20 \times I_n$ nachteilig sein kann.

Beispiel:


Eine Steckdose ist mit einem LS D16 abgesichert. Zur Einhaltung der Abschaltbedingung \leq 0,4 s muß ein Mindest-Kurzschlussstrom von \geq 320 A sichergestellt werden.

Hinweis

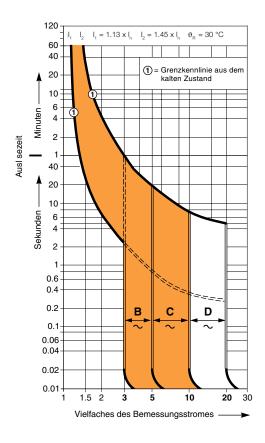
Bei Gleichstrom erhöhen sich die Auslösewerte der elektromagnetischen Auslöser um den Faktor 1,5.

Schutz bei Überlast

Hier wird deutlich, dass mit der Auslöse-Charakteristik "K" mehr Sicherheit beim Planen und im Betrieb erreicht wird.

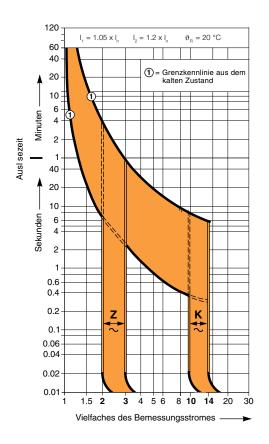
Leitertemperaturen PVCisolierter Leitungen bei Überlast

Belastung	Leitertemperatur*
1,0 x l _n	70 °C
1,2 x l _n	86 °C
1,45 x l _n	116 ℃


Lebensdauer von PVC-isolierten Leitungen nach Arrhenius

Leitertemperatur	Lebensdauer
70 °C	20,0 Jahre
90 °C	2,5 Jahre
100 °C	1.0 Jahr

^{* 90 %} des Temperaturwertes werden aus dem betriebswarmen Zustand heraus nach 5 Minuten erreicht.


Auslöse-Charakteristiken B, C, D, K, Z

Auslöse-Charakteristik B, C, D nach DIN EN 60898-1 (VDE 0641-11) Baubestimmung für Leitungsschutzschalter für Haushaltinstallationen und ähnliche Zwecke

Gegenüber den Auslöse-Charakteristiken "B", "C" und "D", bieten "K" und "Z" mehr Sicherheit beim Planen und im Betrieb.

Auslöse-Charakteristik K, Z nach DIN EN 60947-2 (VDE 0660-101) Baubestimmung für Leistungsschalter

Zuordnung

- B, C und D für den Überstromschutz von Leitungen nach DIN EN 60898-1 (DIN VDE 0641-11)
- K zum Schutz von Wicklungen bei Motoren und Transformatoren bei gleichzeitigem Überstromschutz der Leitungen
- Z für Steuerstromkreise mit hohen Impedanzen, für Spannungswandlerkreise und für Halbleiterschutz bei gleichzeitigem Überstromschutz von Leitungen

Empfehlung

In Steckdosen-Stromkreisen empfehlen wir entsprechend DIN VDE 0100-410 eine FI/LS-Kombination.

Weitere Kriterien bei der Auswahl von Sicherungsautomaten

Um den Stromkreis bestmöglich abzusichern, sind zusätzliche Randbedingungen bei der Auswahl der Sicherungsautomaten zu berücksichtigen:

- Der Sicherungsautomat ist auf den Bemessungsstrom des angeschlossenen Gerätes oder der Strombelastbarkeit der Leitung abzustimmen, je nachdem welcher der niedrigere Wert ist.
- Umgebungstemperatur
- Gegenseitige Beeinflussung bei Anordnung von mehreren Sicherungsautomaten nebeneinander

Abweichende Umgebungstemperatur

Die thermischen Auslöser werden vom Hersteller auf eine Bezugsumgebungstemperatur eingestellt. Diese beträgt für "K" und "Z" 20 °C, für "B", "C" und "D" 30 °C. Bei höheren Umgebungstemperaturen verringern sich die maximalen Betriebsströme um ca. 6 % je +10°C Temperaturdifferenz. Für genaue Berechnungen und sehr hohe bzw. niedrige Umgebungstemperaturen müssen Referenztabellen herangezogen werden.

Gegenseitige Beeinflussung bei gleichmäßiger Belastung

Bei dichter Aneinanderreihung und gleichmäßig hoher Auslastung der Sicherungsautomaten muss ein Korrekturfaktor berücksichtigt werden:

- 2 und 3 Sicherungsautomaten: Faktor 0,94 und 5 Sicherungsautomaten: Faktor 0,8
- 6 und mehr Sicherungsautomaten: Faktor 0,75
 Werden Füll- bzw. Distanzstücke eingesetzt, finden diese
 Faktoren keine Anwendung.

Auslösebedingungen für Sicherungsautomaten für AC-Anwendungen

Auslösecharakteristik	В	С	D			K	Z	
Norm		'		DIN EN 60898-1, -2		in Anlehnung an DIN EN 60947		
				(VDE 0641-11, -12)		(VDE 0660)		
Zeit-Strom-Kennlinie*	x I _n (30 °C)		C)	Zei	ten	x I _n (2	20 °C)	Zeiten
Nicht-Auslösen		1,13		1 h (l _n ≤ 63 A)	2 h (l _n > 63 A)	1,05		1 h
Auslösen		1,45		1 60 s (I _n ≤ 63 A)	1 120 s (I _n > 63 A)	1,2		1 h
Auslösen		2,55		1 60 s (I _n ≤ 32 A) 1 120 s (I _n > 32 A)		1	,5	< 120 s
						6		> 2 s
Sofort-Auslösung (magn.)	x I _n			Zeiten		X	: I _n	Zeiten
Nicht-Auslösen	3	5	10	0,1 s		10	2	0,2 s
Auslösen	5	10	20	0,1 s		14	3	0,2 s

^{*} Für abweichende Umgebungstemperaturen gelten Reduktionsfaktoren!

Sicherungsautomaten für den Leitungs- und Geräteschutz sowie ihre Anwendungsbereiche

Anwendungsber	eiche	S 200	B 200 P	S 220	S 800	S 700	S 400
		S 200 M	S 200 U/UP		S 500 HV	S 750 (DR)	SMISSLINE
			S 200 UDC		S 800 PV	WT 63	
			S 280 UC			1	
Industrienetze	-M-						
690 V AC	W			S 220	S 800		
1000 V AC					S 500 HV		
Motorschutz Trafo)	S 200-K	S 200 P-K	S 220-K	S 800-K	S 700-K	S 400 M-K
-M-	-	S 200 M-K	S 280 UC-K		S 800-D	WT 63 S 750 DR-K	S 400 M-D
→ - USV	250 V DC		S 280 UC		S 800 UC		S 400 M-UC C
_	bis				S 800 PV		
Photovoltaik	1200 V DC						
Halbleiterschutz	Steuerstrom-	S 200-Z	S 200 P-Z				S 400 M-UC Z
— 4	kreise	S 200 M-Z					
	24 V DC						
Selektivität						S 700	
***	_					S 750 (DR)	
^' \	- -						
Trennfunktion		S 200	S 200 P	S 220	S 800	S 700	S 400
nach DIN VDE 01	00-537	S 200 M				S 750 (DR)	S 400 M
USA, Kanada	480 V AC		S 200 UP				
	240 V AC		S 200 U				
	60 V DC		S 200 UDC				
(UL)	00 . 20		0 200 020				
USA, Kanada	600 V AC			S 220			
71 1077 (F)	480 V AC	S 200	S 200 P				
- 4	60 V DC	S 200	S 200 P				
	500 V DC		S 280 UC				
Schiffsklassifikation	onen	S 200	S 200 P		S 800	S 700 (GL)	S 400 M
GL LRS							
BV DNV							
Bemessungsscha		6 000	max. 25 000	max. 10 000	max. 50 000	25 000	6 000
vermögen (230/400 V AC)	I _{cn} /A	10 000					10 000
·	I _n /A	≤ 63	0,5 63	≤ 63	≤ 125	≤ 100	≤ 63

① als selektiver Gruppen- oder Vorautomat

Kontakt

ABB STOTZ-KONTAKT GmbH

Postfach 10 16 80

69006 Heidelberg, Deutschland Telefon: +49 (0) 6221 7 01-0 Telefax: +49 (0) 6221 7 01-13 25 E-Mail: info.desto@de.abb.com

www.abb.de/stotzkontakt

Hinweis

Technische Änderungen der Produkte sowie Änderungen im Inhalt dieses Dokuments behalten wir uns jederzeit ohne Vorankündigung vor. Bei Bestellungen sind die jeweils vereinbarten Beschaffenheiten maßgebend. Die ABB AG übernimmt keinerlei Verantwortung für eventuelle Fehler oder Unvollständigkeiten in diesem Dokument.

Wir behalten uns alle Rechte an diesem Dokument und den darin enthaltenen Gegenständen und Abbildungen vor. Vervielfältigung, Bekanntgabe an Dritte oder Verwertung seines Inhaltes – auch von Teilen – ist ohne vorherige schriftliche Zustimmung durch die ABB AG verboten.

Copyright© 2011 ABB Alle Rechte vorbehalten